when its input is constant and the element coercion function is immutable
(or nonexistent, ie, binary-coercible case). This is an oversight in the
8.3 implementation of ArrayCoerceExpr, and its result is that certain cases
involving IN or NOT IN with constants don't get optimized as they should be.
Per experimentation with an example from Ow Mun Heng.
into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside
the backend. There's probably more that should be done along this line,
but this is a start anyway.
subqueries into the same thing you'd have gotten from IN (except always with
unknownEqFalse = true, so as to get the proper semantics for an EXISTS).
I believe this fixes the last case within CVS HEAD in which an EXISTS could
give worse performance than an equivalent IN subquery.
The tricky part of this is that if the upper query probes the EXISTS for only
a few rows, the hashing implementation can actually be worse than the default,
and therefore we need to make a cost-based decision about which way to use.
But at the time when the planner generates plans for subqueries, it doesn't
really know how many times the subquery will be executed. The least invasive
solution seems to be to generate both plans and postpone the choice until
execution. Therefore, in a query that has been optimized this way, EXPLAIN
will show two subplans for the EXISTS, of which only one will actually get
executed.
There is a lot more that could be done based on this infrastructure: in
particular it's interesting to consider switching to the hash plan if we start
out using the non-hashed plan but find a lot more upper rows going by than we
expected. I have therefore left some minor inefficiencies in place, such as
initializing both subplans even though we will currently only use one.
and anti joins. To do this, pass the SpecialJoinInfo struct for the current
join as an additional optional argument to operator join selectivity
estimation functions. This allows the estimator to tell not only what kind
of join is being formed, but which variable is on which side of the join;
a requirement long recognized but not dealt with till now. This also leaves
the door open for future improvements in the estimators, such as accounting
for the null-insertion effects of lower outer joins. I didn't do anything
about that in the current patch but the information is in principle deducible
from what's passed.
The patch also clarifies the definition of join selectivity for semi/anti
joins: it's the fraction of the left input that has (at least one) match
in the right input. This allows getting rid of some very fuzzy thinking
that I had committed in the original 7.4-era IN-optimization patch.
There's probably room to estimate this better than the present patch does,
but at least we know what to estimate.
Since I had to touch CREATE OPERATOR anyway to allow a variant signature
for join estimator functions, I took the opportunity to add a couple of
additional checks that were missing, per my recent message to -hackers:
* Check that estimator functions return float8;
* Require execute permission at the time of CREATE OPERATOR on the
operator's function as well as the estimator functions;
* Require ownership of any pre-existing operator that's modified by
the command.
I also moved the lookup of the functions out of OperatorCreate() and
into operatorcmds.c, since that seemed more consistent with most of
the other catalog object creation processes, eg CREATE TYPE.
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
hashtable entries for tuples that are found only in the second input: they
can never contribute to the output. Furthermore, this implies that the
planner should endeavor to put first the smaller (in number of groups) input
relation for an INTERSECT. Implement that, and upgrade prepunion's estimation
of the number of rows returned by setops so that there's some amount of sanity
in the estimate of which one is smaller.
but seem like a separate patch since most of the remaining work is on the
executor side.) I took the opportunity to push selection of the grouping
operators for set operations into the parser where it belongs. Otherwise this
is just a small exercise in making prepunion.c consider both alternatives.
As with the recent DISTINCT patch, this means we can UNION on datatypes that
can hash but not sort, and it means that UNION without ORDER BY is no longer
certain to produce sorted output.
as per my recent proposal:
1. Fold SortClause and GroupClause into a single node type SortGroupClause.
We were already relying on them to be struct-equivalent, so using two node
tags wasn't accomplishing much except to get in the way of comparing items
with equal().
2. Add an "eqop" field to SortGroupClause to carry the associated equality
operator. This is cheap for the parser to get at the same time it's looking
up the sort operator, and storing it eliminates the need for repeated
not-so-cheap lookups during planning. In future this will also let us
represent GROUP/DISTINCT operations on datatypes that have hash opclasses
but no btree opclasses (ie, they have equality but no natural sort order).
The previous representation simply didn't work for that, since its only
indicator of comparison semantics was a sort operator.
3. Add a hasDistinctOn boolean to struct Query to explicitly record whether
the distinctClause came from DISTINCT or DISTINCT ON. This allows removing
some complicated and not 100% bulletproof code that attempted to figure
that out from the distinctClause alone.
This patch doesn't in itself create any new capability, but it's necessary
infrastructure for future attempts to use hash-based grouping for DISTINCT
and UNION/INTERSECT/EXCEPT.
SizeOfPageHeaderData instead of sizeof(PageHeaderData) in places where that
makes the code clearer, and avoid casting between Page and PageHeader where
possible. Zdenek Kotala, with some additional cleanup by Heikki Linnakangas.
I did not apply the parts of the proposed patch that would have resulted in
slightly changing the on-disk format of hash indexes; it seems to me that's
not a win as long as there's any chance of having in-place upgrade for 8.4.
corresponding struct definitions. This allows other headers to avoid including
certain highly-loaded headers such as rel.h and relscan.h, instead using just
relcache.h, heapam.h or genam.h, which are more lightweight and thus cause less
unnecessary dependencies.
unnecessary #include lines in it. Also, move some tuple routine prototypes and
macros to htup.h, which allows removal of heapam.h inclusion from some .c
files.
For this to work, a new header file access/sysattr.h needed to be created,
initially containing attribute numbers of system columns, for pg_dump usage.
While at it, make contrib ltree, intarray and hstore header files more
consistent with our header style.
output is not of the same type that's needed for the IN comparison (ie,
where the parser inserted an implicit coercion above the subselect result).
We should record the coerced expression, not just a raw Var referencing
the subselect output, as the quantity that needs to be unique-ified if
we choose to implement the IN as Unique followed by a plain join.
As of 8.3 this error was causing crashes, as seen in bug #4113 from Javier
Hernandez, because the executor was being told to hash or sort the raw
subselect output column using operators appropriate to the coerced type.
In prior versions there was no crash because the executor chose the
hash or sort operators for itself based on the column type it saw.
However, that's still not really right, because what's unique for one data
type might not be unique for another. In corner cases we could get multiple
outputs of a row that should appear only once, as demonstrated by the
regression test case included in this commit.
However, this patch doesn't apply cleanly to 8.2 or before, and the code
involved has shifted enough over time that I'm hesitant to try to back-patch.
Given the lack of complaints from the field about such corner cases, I think
the bug may not be important enough to risk breaking other things with a
back-patch.
eval_const_expressions needs to be passed the PlannerInfo ("root") structure,
because in some cases we want it to substitute values for Param nodes.
(So "constant" is not so constant as all that ...) This mistake partially
disabled optimization of unnamed extended-Query statements in 8.3: in
particular the LIKE-to-indexscan optimization would never be applied if the
LIKE pattern was passed as a parameter, and constraint exclusion depending
on a parameter value didn't work either.
snapmgmt.c file for the former. The header files have also been reorganized
in three parts: the most basic snapshot definitions are now in a new file
snapshot.h, and the also new snapmgmt.h keeps the definitions for snapmgmt.c.
tqual.h has been reduced to the bare minimum.
This patch is just a first step towards managing live snapshots within a
transaction; there is no functionality change.
Per my proposal to pgsql-patches on 20080318191940.GB27458@alvh.no-ip.org and
subsequent discussion.
strings. This patch introduces four support functions cstring_to_text,
cstring_to_text_with_len, text_to_cstring, and text_to_cstring_buffer, and
two macros CStringGetTextDatum and TextDatumGetCString. A number of
existing macros that provided variants on these themes were removed.
Most of the places that need to make such conversions now require just one
function or macro call, in place of the multiple notational layers that used
to be needed. There are no longer any direct calls of textout or textin,
and we got most of the places that were using handmade conversions via
memcpy (there may be a few still lurking, though).
This commit doesn't make any serious effort to eliminate transient memory
leaks caused by detoasting toasted text objects before they reach
text_to_cstring. We changed PG_GETARG_TEXT_P to PG_GETARG_TEXT_PP in a few
places where it was easy, but much more could be done.
Brendan Jurd and Tom Lane
are declared to return set, and consist of just a single SELECT. We
can replace the FROM-item with a sub-SELECT and then optimize much as
if we were dealing with a view. Patch from Richard Rowell, cleaned up
by me.
two buckets at the start, we create a number of buckets appropriate for the
estimated size of the table. This avoids a lot of expensive bucket-split
actions during initial index build on an already-populated table.
This is one of the two core ideas of Tom Raney and Shreya Bhargava's patch
to reduce hash index build time. I'm committing it separately to make it
easier for people to test the effects of this separately from the effects
of their other core idea (pre-sorting the index entries by bucket number).
constraint yields TRUE for every row of its table, only that it does not
yield FALSE (a NULL result isn't disallowed). This breaks a couple of
implications that would be true in two-valued logic. I had put in one such
mistake in an 8.2.5 patch: foo IS NULL doesn't refute a strict operator
on foo. But there was another in the original 8.2 release: NOT foo doesn't
refute an expression whose truth would imply the truth of foo.
Per report from Rajesh Kumar Mallah.
To preserve the ability to do constraint exclusion with one partition
holding NULL values, extend relation_excluded_by_constraints() to check
for attnotnull flags, and add col IS NOT NULL expressions to the set of
constraints we hope to refute.
checking of argument compatibility right; although the problem is only exposed
with multiple-input aggregates in which some arguments are polymorphic and
some are not. Per bug #3852 from Sokolov Yura.
OpExpr and related nodes. We're going to have to set the opfuncid of
such nodes eventually (if we haven't already), so we might as well
exploit the opportunity to cache the function OID. Buys back some
of the extra planner overhead noted by Guillaume Smet, though I still
need to fool with equivclass.c to really respond to that.
predictable manner; in particular that if you say ORDER BY output-column-ref,
it will in fact sort by that specific column even if there are multiple
syntactic matches. An example is
SELECT random() AS a, random() AS b FROM ... ORDER BY b, a;
While the use-case for this might be a bit debatable, it worked as expected
in earlier releases, so we should preserve the behavior for 8.3. Per my
recent proposal.
While at it, fix convert_subquery_pathkeys() to handle RelabelType stripping
in both directions; it needs this for the same reasons make_sort_from_pathkeys
does.
to be able to discard top-level RelabelType nodes on *both* sides of the
equivalence-class-to-target-list comparison, since make_pathkey_from_sortinfo
might either add or remove a RelabelType. Also fix the latter to do the
removal case cleanly. Per example from Peter.
simplification gets detoasted before it is incorporated into a Const node.
Otherwise, if an immutable function were to return a TOAST pointer (an
unlikely case, but it can be made to happen), we would end up with a plan
that depends on the continued existence of the out-of-line toast datum.
columns, and the new version can be stored on the same heap page, we no longer
generate extra index entries for the new version. Instead, index searches
follow the HOT-chain links to ensure they find the correct tuple version.
In addition, this patch introduces the ability to "prune" dead tuples on a
per-page basis, without having to do a complete VACUUM pass to recover space.
VACUUM is still needed to clean up dead index entries, however.
Pavan Deolasee, with help from a bunch of other people.
null::char(3) to a simple Const node. (It already worked for non-null values,
but not when we skipped evaluation of a strict coercion function.) This
prevents loss of typmod knowledge in situations such as exhibited in bug
#3598. Unfortunately there seems no good way to fix that bug in 8.1 and 8.2,
because they simply don't carry a typmod for a plain Const node.
In passing I made all the other callers of makeNullConst supply "real" typmod
values too, though I think it probably doesn't matter anywhere else.
There are still some loose ends: I didn't do anything about the SET FROM
CURRENT idea yet, and it's not real clear whether we are happy with the
interaction of SET LOCAL with function-local settings. The documentation
is a bit spartan, too.
checking whether an IS NULL/IS NOT NULL clause is implied or refuted by
a strict function. Per example from Dawid Kuroczko.
Backpatch to 8.2 since this is arguably a performance bug.
(which now deals only in optimizable statements), and put that code
into a new file parser/parse_utilcmd.c. This helps clarify and enforce
the design rule that utility statements shouldn't be processed during
the regular parse analysis phase; all interpretation of their meaning
should happen after they are given to ProcessUtility to execute.
(We need this because we don't retain any locks for a utility statement
that's in a plan cache, nor have any way to detect that it's stale.)
We are also able to simplify the API for parse_analyze() and related
routines, because they will now always return exactly one Query structure.
In passing, fix bug #3403 concerning trying to add a serial column to
an existing temp table (this is largely Heikki's work, but we needed
all that restructuring to make it safe).
Along the way, allow FOR UPDATE in non-WITH-HOLD cursors; there may once
have been a reason to disallow that, but it seems to work now, and it's
really rather necessary if you want to select a row via a cursor and then
update it in a concurrent-safe fashion.
Original patch by Arul Shaji, rather heavily editorialized by Tom Lane.
from the other string-category types; this eliminates a lot of surprising
interpretations that the parser could formerly make when there was no directly
applicable operator.
Create a general mechanism that supports casts to and from the standard string
types (text,varchar,bpchar) for *every* datatype, by invoking the datatype's
I/O functions. These new casts are assignment-only in the to-string direction,
explicit-only in the other, and therefore should create no surprising behavior.
Remove a bunch of thereby-obsoleted datatype-specific casting functions.
The "general mechanism" is a new expression node type CoerceViaIO that can
actually convert between *any* two datatypes if their external text
representations are compatible. This is more general than needed for the
immediate feature, but might be useful in plpgsql or other places in future.
This commit does nothing about the issue that applying the concatenation
operator || to non-text types will now fail, often with strange error messages
due to misinterpreting the operator as array concatenation. Since it often
(not always) worked before, we should either make it succeed or at least give
a more user-friendly error; but details are still under debate.
Peter Eisentraut and Tom Lane
index key columns always have the type expected by the index's associated
operators, ie, we add RelabelType nodes when dealing with binary-compatible
index opclasses. This is needed to get varchar indexes to play nicely with
the new EquivalenceClass machinery, as per recent gripe from Josh Berkus that
CVS HEAD was failing to match a varchar index column to a constant restriction
in the query.
It seems likely that this change will allow removal of a lot of ugly ad-hoc
RelabelType-stripping that the planner has traditionally done while matching
expressions to other expressions, but I'll worry about that some other day.
and/or create plans for hypothetical situations; in particular, investigate
plans that would be generated using hypothetical indexes. This is a
heavily-rewritten version of the hooks proposed by Gurjeet Singh for his
Index Advisor project. In this formulation, the index advisor can be
entirely a loadable module instead of requiring a significant part to be
in the core backend, and plans can be generated for hypothetical indexes
without requiring the creation and rolling-back of system catalog entries.
The index advisor patch as-submitted is not compatible with these hooks,
but it needs significant work anyway due to other 8.2-to-8.3 planner
changes. With these hooks in the core backend, development of the advisor
can proceed as a pgfoundry project.
more completely. The motivation for having it understand IS NULL at all was
to allow use of "foo IS NULL" as one of the subsets of a partitioning on
"foo", but as reported by Aleksander Kmetec, it wasn't really getting the job
done. Backpatch to 8.2 since this is arguably a performance bug.
need be returned. We keep a heap of the current best N tuples and sift-up
new tuples into it as we scan the input. For M input tuples this means
only about M*log(N) comparisons instead of M*log(M), not to mention a lot
less workspace when N is small --- avoiding spill-to-disk for large M
is actually the most attractive thing about it. Patch includes planner
and executor support for invoking this facility in ORDER BY ... LIMIT
queries. Greg Stark, with some editorialization by moi.
wrong thing when inlining polymorphic SQL functions, because it was using the
function's declared return type where it should have used the actual result
type of the current call. In 8.1 and 8.2 this causes obvious failures even if
you don't have assertions turned on; in 8.0 and 7.4 it would only be a problem
if the inlined expression were used as an input to a function that did
run-time type determination on its inputs. Add a regression test, since this
is evidently an under-tested area.
We can just palloc, instead of using makeNode, when we are going to
overwrite the whole node anyway in the FLATCOPY macro. Also, use
FLATCOPY instead of copyObject for common node types Var and Const.
types of unspecified parameters when submitted via extended query protocol.
This worked in 8.2 but I had broken it during plancache changes. DECLARE
CURSOR is now treated almost exactly like a plain SELECT through parse
analysis, rewrite, and planning; only just before sending to the executor
do we divert it away to ProcessUtility. This requires a special-case check
in a number of places, but practically all of them were already special-casing
SELECT INTO, so it's not too ugly. (Maybe it would be a good idea to merge
the two by treating IntoClause as a form of utility statement? Not going to
worry about that now, though.) That approach doesn't work for EXPLAIN,
however, so for that I punted and used a klugy solution of running parse
analysis an extra time if under extended query protocol.
are mostly excluded by constraints: do the CE test a bit earlier to save
some adjust_appendrel_attrs() work on excluded children, and arrange to
use array indexing rather than rt_fetch() to fetch RTEs in the main body
of the planner. The latter is something I'd wanted to do for awhile anyway,
but seeing list_nth_cell() as 35% of the runtime gets one's attention.
seen by code inspecting the expression. The best way to do this seems
to be to drop the original representation as a function invocation, and
instead make a special expression node type that represents applying
the element-type coercion function to each array element. In this way
the element function is exposed and will be checked for volatility.
Per report from Guillaume Smet.
available information about the typmod of an expression; namely, Const,
ArrayRef, ArrayExpr, and EXPR and ARRAY SubLinks. In the ArrayExpr and
SubLink cases it wasn't really the data structure's fault, but exprTypmod()
being lazy. This seems like a good idea in view of the expected increase in
typmod usage from Teodor's work to allow user-defined types to have typmods.
In particular this responds to the concerns we had about eliminating the
special-purpose hack that exprTypmod() used to have for BPCHAR Consts.
We can now tell whether or not such a Const has been cast to a specific
length, and report or display properly if so.
initdb forced due to changes in stored rules.
module and teach PREPARE and protocol-level prepared statements to use it.
In service of this, rearrange utility-statement processing so that parse
analysis does not assume table schemas can't change before execution for
utility statements (necessary because we don't attempt to re-acquire locks
for utility statements when reusing a stored plan). This requires some
refactoring of the ProcessUtility API, but it ends up cleaner anyway,
for instance we can get rid of the QueryContext global.
Still to do: fix up SPI and related code to use the plan cache; I'm tempted to
try to make SQL functions use it too. Also, there are at least some aspects
of system state that we want to ensure remain the same during a replan as in
the original processing; search_path certainly ought to behave that way for
instance, and perhaps there are others.
check_sql_fn_retval allows binary-compatibility cases, the expression
extracted from an inline-able SQL function might have a type that is only
binary-compatible with the declared function result type. To avoid possibly
changing the semantics of the expression, we should insert a RelabelType node
in such cases. This has only been shown to have bad consequences in recent
8.1 and up releases, but I suspect there may be failure cases in the older
branches too, so patch it all the way back. Per bug #3116 from Greg Mullane.
Along the way, fix an omission in eval_const_expressions_mutator: it failed
to copy the relabelformat field when processing a RelabelType. No known
observable failures from this, but it definitely isn't intended behavior.