Commit 45ba424f improved foreign key lookups during bulk updates
when the FK value does not change. When restoring a schema dump
from a database with many (say 100,000) foreign keys, this cache
would grow very big and every ALTER TABLE command was causing an
InvalidateConstraintCacheCallBack(), which uses a sequential hash
table scan. This could cause a severe performance regression in
restoring a schema dump (including during pg_upgrade).
The patch uses a heuristic method of detecting when the hash table
should be destroyed and recreated.
InvalidateConstraintCacheCallBack() adds the current size of the
hash table to a counter. When that sum reaches 1,000,000, the hash
table is flushed. This fixes the regression without noticeable
harm to the bulk update use case.
Jan Wieck
Backpatch to 9.3 where the performance regression was introduced.
While building error messages to return to the user,
BuildIndexValueDescription, ExecBuildSlotValueDescription and
ri_ReportViolation would happily include the entire key or entire row in
the result returned to the user, even if the user didn't have access to
view all of the columns being included.
Instead, include only those columns which the user is providing or which
the user has select rights on. If the user does not have any rights
to view the table or any of the columns involved then no detail is
provided and a NULL value is returned from BuildIndexValueDescription
and ExecBuildSlotValueDescription. Note that, for key cases, the user
must have access to all of the columns for the key to be shown; a
partial key will not be returned.
Back-patch all the way, as column-level privileges are now in all
supported versions.
This has been assigned CVE-2014-8161, but since the issue and the patch
have already been publicized on pgsql-hackers, there's no point in trying
to hide this commit.
This was not changed in HEAD, but will be done later as part of a
pgindent run. Future pgindent runs will also do this.
Report by Tom Lane
Backpatch through all supported branches, but not HEAD
This patch addresses the problem that applications currently have to
extract object names from possibly-localized textual error messages,
if they want to know for example which index caused a UNIQUE_VIOLATION
failure. It adds new error message fields to the wire protocol, which
can carry the name of a table, table column, data type, or constraint
associated with the error. (Since the protocol spec has always instructed
clients to ignore unrecognized field types, this should not create any
compatibility problem.)
Support for providing these new fields has been added to just a limited set
of error reports (mainly, those in the "integrity constraint violation"
SQLSTATE class), but we will doubtless add them to more calls in future.
Pavel Stehule, reviewed and extensively revised by Peter Geoghegan, with
additional hacking by Tom Lane.
This patch introduces two additional lock modes for tuples: "SELECT FOR
KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each
other, in contrast with already existing "SELECT FOR SHARE" and "SELECT
FOR UPDATE". UPDATE commands that do not modify the values stored in
the columns that are part of the key of the tuple now grab a SELECT FOR
NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently
with tuple locks of the FOR KEY SHARE variety.
Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this
means the concurrency improvement applies to them, which is the whole
point of this patch.
The added tuple lock semantics require some rejiggering of the multixact
module, so that the locking level that each transaction is holding can
be stored alongside its Xid. Also, multixacts now need to persist
across server restarts and crashes, because they can now represent not
only tuple locks, but also tuple updates. This means we need more
careful tracking of lifetime of pg_multixact SLRU files; since they now
persist longer, we require more infrastructure to figure out when they
can be removed. pg_upgrade also needs to be careful to copy
pg_multixact files over from the old server to the new, or at least part
of multixact.c state, depending on the versions of the old and new
servers.
Tuple time qualification rules (HeapTupleSatisfies routines) need to be
careful not to consider tuples with the "is multi" infomask bit set as
being only locked; they might need to look up MultiXact values (i.e.
possibly do pg_multixact I/O) to find out the Xid that updated a tuple,
whereas they previously were assured to only use information readily
available from the tuple header. This is considered acceptable, because
the extra I/O would involve cases that would previously cause some
commands to block waiting for concurrent transactions to finish.
Another important change is the fact that locking tuples that have
previously been updated causes the future versions to be marked as
locked, too; this is essential for correctness of foreign key checks.
This causes additional WAL-logging, also (there was previously a single
WAL record for a locked tuple; now there are as many as updated copies
of the tuple there exist.)
With all this in place, contention related to tuples being checked by
foreign key rules should be much reduced.
As a bonus, the old behavior that a subtransaction grabbing a stronger
tuple lock than the parent (sub)transaction held on a given tuple and
later aborting caused the weaker lock to be lost, has been fixed.
Many new spec files were added for isolation tester framework, to ensure
overall behavior is sane. There's probably room for several more tests.
There were several reviewers of this patch; in particular, Noah Misch
and Andres Freund spent considerable time in it. Original idea for the
patch came from Simon Riggs, after a problem report by Joel Jacobson.
Most code is from me, with contributions from Marti Raudsepp, Alexander
Shulgin, Noah Misch and Andres Freund.
This patch was discussed in several pgsql-hackers threads; the most
important start at the following message-ids:
AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com1290721684-sup-3951@alvh.no-ip.org1294953201-sup-2099@alvh.no-ip.org1320343602-sup-2290@alvh.no-ip.org1339690386-sup-8927@alvh.no-ip.org4FE5FF020200002500048A3D@gw.wicourts.gov4FEAB90A0200002500048B7D@gw.wicourts.gov
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
The original coding in ri_triggers.c had partial support for the concept of
zero-column foreign key constraints. But this is not defined in the SQL
standard, nor was it ever allowed by any other part of Postgres, nor was it
very fully implemented even here (eg there was no support for preventing
PK-table deletions that would violate the constraint). Doesn't seem very
useful to carry 100-plus lines of code for a corner case that no one is
interested in making work. Instead, just add a check that the column list
read from pg_constraint is non-empty.
Extracting data from pg_constraint turned out to take as much as 10% of the
runtime in a bulk-update case where the foreign key column wasn't changing,
because we did it over again for each tuple. Fix that by maintaining a
backend-local cache of the results. This is really a pretty small patch,
but converting the trigger functions to work with pointers rather than
local struct variables requires a lot of mechanical changes.
During an update of a PK row, we can skip firing the RI trigger if any old
key value is NULL, because then the row could not have had any matching
rows in the FK table. Conversely, during an update of an FK row, the
outcome is determined if any new key value is NULL. In either case it
becomes unnecessary to compare individual key values.
This patch was inspired by discussion of Vik Reykja's patch to use IS NOT
DISTINCT semantics for the key comparisons. In the event there is no need
for that and so this patch looks nothing like his, but he should still get
credit for having re-opened consideration of the trigger skip logic.
These triggers are identical except for whether ri_Check_Pk_Match is to be
called, so factor out the common code to save a couple hundred lines.
Also, eliminate null-column checks in ri_Check_Pk_Match, since they're
duplicate with the calling functions and require unnecessary complication
in its API statement.
Simplify the way code is shared between RI_FKey_check_ins and
RI_FKey_check_upd, too.
I was confused about this, so try to make it clearer for the next person.
(This seems like a fairly inefficient way of dealing with a corner case,
but I don't have a better idea offhand. Maybe if there were a way to turn
off the RI_FKey_keyequal_upd_fk event filter temporarily?)
Once upon a time, somebody was worried that cached RI plans wouldn't get
remade with new default values after ALTER TABLE ... SET DEFAULT, so they
didn't allow caching of plans for ON UPDATE/DELETE SET DEFAULT actions.
That time is long gone, though (and even at the time I doubt this was the
greatest hazard posed by ALTER TABLE...). So allow these triggers to cache
their plans just like the others.
The cache_plan argument to ri_PlanCheck is now vestigial, since there
are no callers that don't pass "true"; but I left it alone in case there
is any future need for it.
We really only need the foreign key constraint's OID and the query type
code to uniquely identify each plan we are caching for FK checks. The
other stuff that was in the struct had no business being used as part of
a hash key, and was all just being copied from struct RI_ConstraintInfo
anyway. Get rid of the unnecessary fields, and readjust various function
APIs to make them use RI_ConstraintInfo not RI_QueryKey as info source.
I'd be surprised if this makes any measurable performance difference,
but it certainly feels cleaner.
Now that what we're implementing isn't SQL92, we probably shouldn't cite
chapter and verse in that spec anymore. Also fix some comments that
talked about MATCH FULL but in fact were in code that's also used for
MATCH SIMPLE.
No code changes in this commit, just comments.
Previously, when executing an ON UPDATE SET NULL or SET DEFAULT action for
a multicolumn MATCH SIMPLE foreign key constraint, we would set only those
referencing columns corresponding to referenced columns that were changed.
This is what the SQL92 standard said to do --- but more recent versions
of the standard say that all referencing columns should be set to null or
their default values, no matter exactly which referenced columns changed.
At least for SET DEFAULT, that is clearly saner behavior. It's somewhat
debatable whether it's an improvement for SET NULL, but it appears that
other RDBMS systems read the spec this way. So let's do it like that.
This is a release-notable behavioral change, although considering that
our documentation already implied it was done this way, the lack of
complaints suggests few people use such cases.
Previously we followed the SQL92 wording, "MATCH <unspecified>", but since
SQL99 there's been a less awkward way to refer to the default style.
In addition to the code changes, pg_constraint.confmatchtype now stores
this match style as 's' (SIMPLE) rather than 'u' (UNSPECIFIED). This
doesn't affect pg_dump or psql because they use pg_get_constraintdef()
to reconstruct foreign key definitions. But other client-side code might
examine that column directly, so this change will have to be marked as
an incompatibility in the 9.3 release notes.
We already skip rewriting the table in these cases, but we still force a
whole table scan to validate the data. This can be skipped, and thus
we can make the whole ALTER TABLE operation just do some catalog touches
instead of scanning the table, when these two conditions hold:
(a) Old and new pg_constraint.conpfeqop match exactly. This is actually
stronger than needed; we could loosen things by way of operator
families, but it'd require a lot more effort.
(b) The functions, if any, implementing a cast from the foreign type to
the primary opcintype are the same. For this purpose, we can consider a
binary coercion equivalent to an exact type match. When the opcintype
is polymorphic, require that the old and new foreign types match
exactly. (Since ri_triggers.c does use the executor, the stronger check
for polymorphic types is no mere future-proofing. However, no core type
exercises its necessity.)
Author: Noah Misch
Committer's note: catalog version bumped due to change of the Constraint
node. I can't actually find any way to have such a node in a stored
rule, but given that we have "out" support for them, better be safe.
CREATE EXTENSION needs to transiently set search_path, as well as
client_min_messages and log_min_messages. We were doing this by the
expedient of saving the current string value of each variable, doing a
SET LOCAL, and then doing another SET LOCAL with the previous value at
the end of the command. This is a bit expensive though, and it also fails
badly if there is anything funny about the existing search_path value,
as seen in a recent report from Roger Niederland. Fortunately, there's a
much better way, which is to piggyback on the GUC infrastructure previously
developed for functions with SET options. We just open a new GUC nesting
level, do our assignments with GUC_ACTION_SAVE, and then close the nesting
level when done. This automatically restores the prior settings without a
re-parsing pass, so (in principle anyway) there can't be an error. And
guc.c still takes care of cleanup in event of an error abort.
The CREATE EXTENSION code for this was modeled on some much older code in
ri_triggers.c, which I also changed to use the better method, even though
there wasn't really much risk of failure there. Also improve the comments
in guc.c to reflect this additional usage.
Arrange for any problems with pre-existing settings to be reported as
WARNING not ERROR, so that we don't undesirably abort the loading of the
incoming add-on module. The bad setting is just discarded, as though it
had never been applied at all. (This requires a change in the API of
set_config_option. After some thought I decided the most potentially
useful addition was to allow callers to just pass in a desired elevel.)
Arrange to restore the complete stacked state of the variable, rather than
cheesily reinstalling only the active value. This ensures that custom GUCs
will behave unsurprisingly even when the module loading operation occurs
within nested subtransactions that have changed the active value. Since a
module load could occur as a result of, eg, a PL function call, this is not
an unlikely scenario.
Rewrite plancache.c so that a "cached plan" (which is rather a misnomer
at this point) can support generation of custom, parameter-value-dependent
plans, and can make an intelligent choice between using custom plans and
the traditional generic-plan approach. The specific choice algorithm
implemented here can probably be improved in future, but this commit is
all about getting the mechanism in place, not the policy.
In addition, restructure the API to greatly reduce the amount of extraneous
data copying needed. The main compromise needed to make that possible was
to split the initial creation of a CachedPlanSource into two steps. It's
worth noting in particular that SPI_saveplan is now deprecated in favor of
SPI_keepplan, which accomplishes the same end result with zero data
copying, and no need to then spend even more cycles throwing away the
original SPIPlan. The risk of long-term memory leaks while manipulating
SPIPlans has also been greatly reduced. Most of this improvement is based
on use of the recently-added MemoryContextSetParent primitive.
walsender.h should depend on xlog.h, not vice versa. (Actually, the
inclusion was circular until a couple hours ago, which was even sillier;
but Bruce broke it in the expedient rather than logically correct
direction.) Because of that poor decision, plus blind application of
pgrminclude, we had a situation where half the system was depending on
xlog.h to include such unrelated stuff as array.h and guc.h. Clean up
the header inclusion, and manually revert a lot of what pgrminclude had
done so things build again.
This episode reinforces my feeling that pgrminclude should not be run
without adult supervision. Inclusion changes in header files in particular
need to be reviewed with great care. More generally, it'd be good if we
had a clearer notion of module layering to dictate which headers can sanely
include which others ... but that's a big task for another day.
Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
If the referencing and referenced columns have different collations,
the parser will be unable to resolve which collation to use unless it's
helped out in this way. The effects are sometimes masked, if we end up
using a non-collation-sensitive plan; but if we do use a mergejoin
we'll see a failure, as recently noted by Robert Haas.
The SQL spec states that the referenced column's collation should be used
to resolve RI checks, so that's what we do. Note however that we currently
don't append a COLLATE clause when writing a query that examines only the
referencing column. If we ever support collations that have varying
notions of equality, that will have to be changed. For the moment, though,
it's preferable to leave it off so that we can use a normal index on the
referencing column.
This warning is new in gcc 4.6 and part of -Wall. This patch cleans
up most of the noise, but there are some still warnings that are
trickier to remove.
The recent additions for FDW support required checking foreign-table-ness
in several places in the parse/plan chain. While it's not clear whether
that would really result in a noticeable slowdown, it seems best to avoid
any performance risk by keeping a copy of the relation's relkind in
RangeTblEntry. That might have some other uses later, anyway.
Per discussion.
FK constraints that are marked NOT VALID may later be VALIDATED, which uses an
ShareUpdateExclusiveLock on constraint table and RowShareLock on referenced
table. Significantly reduces lock strength and duration when adding FKs.
New state visible from psql.
Simon Riggs, with reviews from Marko Tiikkaja and Robert Haas
transaction snapshots, i.e. a snapshot registered at the beginning of
a transaction. Change variable naming and comments to reflect this reality
in preparation for a future, truly serializable mode, e.g.
Serializable Snapshot Isolation (SSI).
For the moment transaction snapshots are still used to implement
SERIALIZABLE, but hopefully not for too much longer. Patch by Kevin
Grittner and Dan Ports with review and some minor wording changes by me.
Avoid hard-coding lockmode used for many altering DDL commands, allowing easier
future changes of lock levels. Implementation of initial analysis on DDL
sub-commands, so that many lock levels are now at ShareUpdateExclusiveLock or
ShareRowExclusiveLock, allowing certain DDL not to block reads/writes.
First of number of planned changes in this area; additional docs required
when full project complete.
Remove bespoke code in DoCopy and RI_Initial_Check, which now instead
fabricate call ExecCheckRTPerms with a manufactured RangeTblEntry.
This is intended to make it feasible for an enhanced security provider
to actually make use of ExecutorCheckPerms_hook, but also has the
advantage that RI_Initial_Check can allow use of the fast-path when
column-level but not table-level permissions are present.
KaiGai Kohei. Reviewed (in an earlier version) by Stephen Frost, and by me.
Some further changes to the comments by me.
The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4). This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.
Design and review by Tom Lane.
an allegedly immutable index function. It was previously recognized that
we had to prevent such a function from executing SET/RESET ROLE/SESSION
AUTHORIZATION, or it could trivially obtain the privileges of the session
user. However, since there is in general no privilege checking for changes
of session-local state, it is also possible for such a function to change
settings in a way that might subvert later operations in the same session.
Examples include changing search_path to cause an unexpected function to
be called, or replacing an existing prepared statement with another one
that will execute a function of the attacker's choosing.
The present patch secures VACUUM, ANALYZE, and CREATE INDEX/REINDEX against
these threats, which are the same places previously deemed to need protection
against the SET ROLE issue. GUC changes are still allowed, since there are
many useful cases for that, but we prevent security problems by forcing a
rollback of any GUC change after completing the operation. Other cases are
handled by throwing an error if any change is attempted; these include temp
table creation, closing a cursor, and creating or deleting a prepared
statement. (In 7.4, the infrastructure to roll back GUC changes doesn't
exist, so we settle for rejecting changes of "search_path" in these contexts.)
Original report and patch by Gurjeet Singh, additional analysis by
Tom Lane.
Security: CVE-2009-4136
that are not handled by find_coercion_pathway, notably composite->RECORD.
Now that 8.4 supports composites as primary keys, it's worth dealing with
this case.
values being complained of.
In passing, also remove the arbitrary length limitation in the similar
error detail message for foreign key violations.
Itagaki Takahiro
not include postgres.h nor anything else it doesn't directly need. Add
#includes to calling files as needed to compensate. Per my proposal of
yesterday.
This should be noted as a source code change in the 8.4 release notes,
since it's likely to require changes in add-on modules.
we regenerate the SQL query text not merely the plan derived from it. This
is needed to handle contingencies such as renaming of a table or column
used in an FK. Pre-8.3, such cases worked despite the lack of replanning
(because the cached plan needn't actually change), so this is a regression.
Per bug #4417 from Benjamin Bihler.
There are two ways to track a snapshot: there's the "registered" list, which
is used for arbitrary long-lived snapshots; and there's the "active stack",
which is used for the snapshot that is considered "active" at any time.
This also allows users of snapshots to stop worrying about snapshot memory
allocation and freeing, and about using PG_TRY blocks around ActiveSnapshot
assignment. This is all done automatically now.
As a consequence, this allows us to reset MyProc->xmin when there are no
more snapshots registered in the current backend, reducing the impact that
long-running transactions have on VACUUM.