Hashing for aggregation purposes still needs work, so it's not time to
mark any cross-type operators as hashable for general use, but these cases
work if the operators are so marked by hand in the system catalogs.
which I had removed in the first cut of the EquivalenceClass rewrite to
simplify that patch a little. But it's still important --- in a four-way
join problem mergejoinscansel() was eating about 40% of the planning time
according to gprof. Also, improve the EquivalenceClass code to re-use
join RestrictInfos rather than generating fresh ones for each join
considered. This saves some memory space but more importantly improves
the effectiveness of caching planning info in RestrictInfos.
columns procost and prorows, to allow simple user adjustment of the estimated
cost of a function call, as well as control of the estimated number of rows
returned by a set-returning function. We might eventually wish to extend this
to allow function-specific estimation routines, but there seems to be
consensus that we should try a simple constant estimate first. In particular
this provides a relatively simple way to control the order in which different
WHERE clauses are applied in a plan node, which is a Good Thing in view of the
fact that the recent EquivalenceClass planner rewrite made that much less
predictable than before.
provide just a boolean 'amcanorder', instead of fields that specify the
sort operator strategy numbers. We have decided to require ordering-capable
AMs to use btree-compatible strategy numbers, so the old fields are
overkill (and indeed misleading about what's allowed).
representation of equivalence classes of variables. This is an extensive
rewrite, but it brings a number of benefits:
* planner no longer fails in the presence of "incomplete" operator families
that don't offer operators for every possible combination of datatypes.
* avoid generating and then discarding redundant equality clauses.
* remove bogus assumption that derived equalities always use operators
named "=".
* mergejoins can work with a variety of sort orders (e.g., descending) now,
instead of tying each mergejoinable operator to exactly one sort order.
* better recognition of redundant sort columns.
* can make use of equalities appearing underneath an outer join.
which comparison operators to use for plan nodes involving tuple comparison
(Agg, Group, Unique, SetOp). Formerly the executor looked up the default
equality operator for the datatype, which was really pretty shaky, since it's
possible that the data being fed to the node is sorted according to some
nondefault operator class that could have an incompatible idea of equality.
The planner knows what it has sorted by and therefore can provide the right
equality operator to use. Also, this change moves a couple of catalog lookups
out of the executor and into the planner, which should help startup time for
pre-planned queries by some small amount. Modify the planner to remove some
other cavalier assumptions about always being able to use the default
operators. Also add "nulls first/last" info to the Plan node for a mergejoin
--- neither the executor nor the planner can cope yet, but at least the API is
in place.
per-column options for btree indexes. The planner's support for this is still
pretty rudimentary; it does not yet know how to plan mergejoins with
nondefault ordering options. The documentation is pretty rudimentary, too.
I'll work on improving that stuff later.
Note incompatible change from prior behavior: ORDER BY ... USING will now be
rejected if the operator is not a less-than or greater-than member of some
btree opclass. This prevents less-than-sane behavior if an operator that
doesn't actually define a proper sort ordering is selected.
when collapsing of JOIN trees is stopped by join_collapse_limit. For instance
a list of 11 LEFT JOINs with limit 8 now produces something like
((1 2 3 4 5 6 7 8) 9 10 11 12)
instead of
(((1 2 3 4 5 6 7 8) (9)) 10 11 12)
The latter structure is really only required for a FULL JOIN.
Noted while studying an example from Shane Ambler.
hash joins with the estimated-larger relation on the inside. There are
several cases where doing that makes perfect sense, and in cases where it
doesn't, the regular cost computation really ought to be able to figure that
out. Make some marginal tweaks in said computation to try to get results
approximating reality a bit better. Per an example from Shane Ambler.
Also, fix an oversight in the original patch to add seq_page_cost: the costs
of spilling a hash join to disk should be scaled by seq_page_cost.
the XmlExpr code in various lists, use a representation that has some hope
of reverse-listing correctly (though it's still a de-escaping function
shy of correctness), generally try to make it look more like Postgres
coding conventions.
cases. Operator classes now exist within "operator families". While most
families are equivalent to a single class, related classes can be grouped
into one family to represent the fact that they are semantically compatible.
Cross-type operators are now naturally adjunct parts of a family, without
having to wedge them into a particular opclass as we had done originally.
This commit restructures the catalogs and cleans up enough of the fallout so
that everything still works at least as well as before, but most of the work
needed to actually improve the planner's behavior will come later. Also,
there are not yet CREATE/DROP/ALTER OPERATOR FAMILY commands; the only way
to create a new family right now is to allow CREATE OPERATOR CLASS to make
one by default. I owe some more documentation work, too. But that can all
be done in smaller pieces once this infrastructure is in place.
operator strategy numbers, ie, GiST and GIN. This is almost cosmetic
enough to not need a catversion bump, but since the opr_sanity regression
test has to change in sync with the catalog entry, I figured I'd better
do one.
are all in new-in-8.2 logic associated with indexability of ScalarArrayOpExpr
(IN-clauses) or amortization of indexscan costs across repeated indexscans
on the inside of a nestloop. In particular:
Fix some logic errors in the estimation for multiple scans induced by a
ScalarArrayOpExpr indexqual.
Include a small cost component in bitmap index scans to reflect the costs of
manipulating the bitmap itself; this is mainly to prevent a bitmap scan from
appearing to have the same cost as a plain indexscan for fetching a single
tuple.
Also add a per-index-scan-startup CPU cost component; while prior releases
were clearly too pessimistic about the cost of repeated indexscans, the
original 8.2 coding allowed the cost of an indexscan to effectively go to zero
if repeated often enough, which is overly optimistic.
Pay some attention to index correlation when estimating costs for a nestloop
inner indexscan: this is significant when the plan fetches multiple heap
tuples per iteration, since high correlation means those tuples are probably
on the same or adjacent heap pages.
joinclause doesn't use any outer-side vars) requires a "bushy" plan to be
created. The normal heuristic to avoid joins with no joinclause has to be
overridden in that case. Problem is new in 8.2; before that we forced the
outer join order anyway. Per example from Teodor.
representing externally-supplied values, since the APIs that carry such
values only specify type not typmod. However, for PARAM_SUBLINK Params
it is handy to carry the typmod of the sublink's output column. This
is a much cleaner solution for the recently reported 'could not find
pathkey item to sort' and 'failed to find unique expression in subplan
tlist' bugs than my original 8.2-compatible patch. Besides, someday we
might want to support typmods for external parameters ...
rearrangeable outer joins and the WHERE clause is non-strict and mentions
only nullable-side relations. New bug in 8.2, caused by new logic to allow
rearranging outer joins. Per bug #2807 from Ross Cohen; thanks to Jeff
Davis for producing a usable test case.
a sublink's test expression have the correct vartypmod, rather than defaulting
to -1. There's at least one place where this is important because we're
expecting these Vars to be exactly equal() to those appearing in the subplan
itself. This is a pretty klugy solution --- it would likely be cleaner to
change Param nodes to include a typmod field --- but we can't do that in the
already-released 8.2 branch.
Per bug report from Hubert Fongarnand.
accurately: we have to distinguish the effects of the join's own ON
clauses from the effects of pushed-down clauses. Failing to do so
was a quick hack long ago, but it's time to be smarter. Per example
from Thomas H.
node of a SubLink or SubPlan testexpr field. Bug resulted from replacing
the old lefthand/exprs list fields with a simple expression field, and not
remembering that expression_tree_walker is coded to save a few cycles by
recursing directly to self on list fields (on the assumption the walker
isn't interested in List nodes per se). On non-list fields it must of
course call the walker. Possibly that hack isn't worth the risk of more
such bugs, but I'll leave it be for now. Per bug report from James Robinson.
outer joins. Originally it was only looking for overlap of the righthand
side of a left join, but we have to do it on the lefthand side too.
Per example from Jean-Pierre Pelletier.
the SQL spec, viz IS NULL is true if all the row's fields are null, IS NOT
NULL is true if all the row's fields are not null. The former coding got
this right for a limited number of cases with IS NULL (ie, those where it
could disassemble a ROW constructor at parse time), but was entirely wrong
for IS NOT NULL. Per report from Teodor.
I desisted from changing the behavior for arrays, since on closer inspection
it's not clear that there's any support for that in the SQL spec. This
probably needs more consideration.
tables in the query compete for cache space, not just the one we are
currently costing an indexscan for. This seems more realistic, and it
definitely will help in examples recently exhibited by Stefan
Kaltenbrunner. To get the total size of all the tables involved, we must
tweak the handling of 'append relations' a bit --- formerly we looked up
information about the child tables on-the-fly during set_append_rel_pathlist,
but it needs to be done before we start doing any cost estimation, so
push it into the add_base_rels_to_query scan.
to a relation on the nullable side of an outer join. I had removed
this during the outer join planning rewrite a few months ago ... I think
I intended to put it somewhere else, but forgot ...
that has parameters is always planned afresh for each Bind command,
treating the parameter values as constants in the planner. This removes
the performance penalty formerly often paid for using out-of-line
parameters --- with this definition, the planner can do constant folding,
LIKE optimization, etc. After a suggestion by Andrew@supernews.
trivial if it contains either Vars referencing the corresponding subplan
columns, or Consts equaling the corresponding subplan columns. This
lets the planner eliminate the SubqueryScan in some cases generated by
generate_setop_tlist().
functions in its targetlist, to avoid introducing multiple evaluations
of volatile functions that textually appear only once. This is a
slightly tighter version of Jaime Casanova's recent patch.
mergejoin possibility where the inner rel was less well sorted than
the outer (ie, it matches some but not all of the merge clauses that
can work with the outer), if the inner path in question is also the
overall cheapest path for its rel. This is an old bug, but I'm not
sure it's worth back-patching, because it's such a corner case.
Noted while investigating a test case from Peter Hardman.
subquery's pathkey is a RelabelType applied to something that appears
in the subquery's output; for example where the subquery returns a
varchar Var and the sort order is shown as that Var coerced to text.
This comes up because varchar doesn't have its own sort operator.
Per example from Peter Hardman.
merely a matter of fixing the error check, since the underlying Portal
infrastructure already handles it. This in turn allows these statements
to be used in some existing plpgsql and plperl contexts, such as a
plpgsql FOR loop. Also, do some marginal code cleanup in places that
were being sloppy about distinguishing SELECT from SELECT INTO.
plpgsql support to come later. Along the way, convert execMain's
SELECT INTO support into a DestReceiver, in order to eliminate some ugly
special cases.
Jonah Harris and Tom Lane
same data type and same typmod, we show that typmod as the output
typmod, rather than generic -1. This responds to several complaints
over the past few years about UNIONs unexpectedly dropping length or
precision info.
list, when some of the child rels have been excluded by constraint
exclusion. This doesn't save a huge amount of time but it'll save some,
and it makes the EXPLAIN output look saner. We already did the
equivalent thing in set_append_rel_pathlist(), but not here.
contradictory WHERE-clauses applied to a relation. This makes the
GUC variable constraint_exclusion rather inappropriately named,
but I've refrained for the moment from renaming it.
Per example from Martin Lesser.
This doesn't matter too much for ordinary NOTs, since prepqual.c does
its best to get rid of those, but it helps with IS NOT TRUE clauses
which the rule rewriter likes to insert. Per example from Martin Lesser.
(e.g. "INSERT ... VALUES (...), (...), ...") and elsewhere as allowed
by the spec. (e.g. similar to a FROM clause subselect). initdb required.
Joe Conway and Tom Lane.
(table or index) before trying to open its relcache entry. This fixes
race conditions in which someone else commits a change to the relation's
catalog entries while we are in process of doing relcache load. Problems
of that ilk have been reported sporadically for years, but it was not
really practical to fix until recently --- for instance, the recent
addition of WAL-log support for in-place updates helped.
Along the way, remove pg_am.amconcurrent: all AMs are now expected to support
concurrent update.
the opportunity to treat COUNT(*) as a zero-argument aggregate instead
of the old hack that equated it to COUNT(1); this is materially cleaner
(no more weird ANYOID cases) and ought to be at least a tiny bit faster.
Original patch by Sergey Koposov; review, documentation, simple regression
tests, pg_dump and psql support by moi.
eliminate unnecessary code, force initdb because stored rules change
(limit nodes are now supposed to be int8 not int4 expressions).
Update comments and error messages, which still all said 'integer'.