the column by table OID and column number, if it's a simple column
reference. Along the way, get rid of reskey/reskeyop fields in Resdoms.
Turns out that representation was not convenient for either the planner
or the executor; we can make the planner deliver exactly what the
executor wants with no more effort.
initdb forced due to change in stored rule representation.
Both plannable queries and utility commands are now always executed
within Portals, which have been revamped so that they can handle the
load (they used to be good only for single SELECT queries). Restructure
code to push command-completion-tag selection logic out of postgres.c,
so that it won't have to be duplicated between simple and extended queries.
initdb forced due to addition of a field to Query nodes.
rewritten and the protocol is changed, but most elog calls are still
elog calls. Also, we need to contemplate mechanisms for controlling
all this functionality --- eg, how much stuff should appear in the
postmaster log? And what API should libpq expose for it?
expressions, ARRAY(sub-SELECT) expressions, some array functions.
Polymorphic functions using ANYARRAY/ANYELEMENT argument and return
types. Some regression tests in place, documentation is lacking.
Joe Conway, with some kibitzing from Tom Lane.
utility statement (DeclareCursorStmt) with a SELECT query dangling from
it, rather than a SELECT query with a few unusual fields in it. Add
code to determine whether a planned query can safely be run backwards.
If DECLARE CURSOR specifies SCROLL, ensure that the plan can be run
backwards by adding a Materialize plan node if it can't. Without SCROLL,
you get an error if you try to fetch backwards from a cursor that can't
handle it. (There is still some discussion about what the exact
behavior should be, but this is necessary infrastructure in any case.)
Along the way, make EXPLAIN DECLARE CURSOR work.
codes, per discussion from last March. parse.h should now be included
*only* by gram.y, scan.l, keywords.c, parser.c. This prevents surprising
misbehavior after seemingly-trivial grammar adjustments.
rid of the assumption that sizeof(Oid)==sizeof(int). This is one small
step towards someday supporting 8-byte OIDs. For the moment, it doesn't
do much except get rid of a lot of unsightly casts.
locParam lists can be converted to bitmapsets to speed updating. Also,
replace 'locParam' with 'allParam', which contains all the paramIDs
relevant to the node (i.e., the union of extParam and locParam); this
saves a step during SetChangedParamList() without costing anything
elsewhere.
startup, not in the parser; this allows ALTER DOMAIN to work correctly
with domain constraint operations stored in rules. Rod Taylor;
code review by Tom Lane.
There are two implementation techniques: the executor understands a new
JOIN_IN jointype, which emits at most one matching row per left-hand row,
or the result of the IN's sub-select can be fed through a DISTINCT filter
and then joined as an ordinary relation.
Along the way, some minor code cleanup in the optimizer; notably, break
out most of the jointree-rearrangement preprocessing in planner.c and
put it in a new file prep/prepjointree.c.
containing a volatile function), rather than only on 'Var = Var' clauses
as before. This makes it practical to do flatten_join_alias_vars at the
start of planning, which in turn eliminates a bunch of klugery inside the
planner to deal with alias vars. As a free side effect, we now detect
implied equality of non-Var expressions; for example in
SELECT ... WHERE a.x = b.y and b.y = 42
we will deduce a.x = 42 and use that as a restriction qual on a. Also,
we can remove the restriction introduced 12/5/02 to prevent pullup of
subqueries whose targetlists contain sublinks.
Still TODO: make statistical estimation routines in selfuncs.c and costsize.c
smarter about expressions that are more complex than plain Vars. The need
for this is considerably greater now that we have to be able to estimate
the suitability of merge and hash join techniques on such expressions.
Simplify SubLink by storing just a List of operator OIDs, instead of
a list of incomplete OpExprs --- that was a bizarre and bulky choice,
with no redeeming social value since we have to build new OpExprs
anyway when forming the plan tree.
'NOT (x IN (subselect))', that is 'NOT (x = ANY (subselect))',
rather than 'x <> ALL (subselect)' as we formerly did. This
opens the door to optimizing NOT IN the same way as IN, whereas
there's no hope of optimizing the expression using <>. Also,
convert 'x <> ALL (subselect)' to the NOT(IN) style, so that
the optimization will be available when processing rules dumped
by older Postgres versions.
initdb forced due to small change in SubLink node representation.
in the planned representation of a subplan at all any more, only SubPlan.
This means subselect.c doesn't scribble on its input anymore, which seems
like a good thing; and there are no longer three different possible
interpretations of a SubLink. Simplify node naming and improve comments
in primnodes.h. No change to stored rules, though.
execution state trees, and ExecEvalExpr takes an expression state tree
not an expression plan tree. The plan tree is now read-only as far as
the executor is concerned. Next step is to begin actually exploiting
this property.
make VALUE a non-reserved word again, use less invasive method of passing
ConstraintTestValue into transformExpr, fix problems with nested constraint
testing, do correct thing with NULL result from a constraint expression,
remove memory leak. Domain checks still need much more work if we are going
to allow ALTER DOMAIN, however.
so that all executable expression nodes inherit from a common supertype
Expr. This is somewhat of an exercise in code purity rather than any
real functional advance, but getting rid of the extra Oper or Func node
formerly used in each operator or function call should provide at least
a little space and speed improvement.
initdb forced by changes in stored-rules representation.
to plan nodes, not vice-versa. All executor state nodes now inherit from
struct PlanState. Copying of plan trees has been simplified by not
storing a list of SubPlans in Plan nodes (eliminating duplicate links).
The executor still needs such a list, but it can build it during
ExecutorStart since it has to scan the plan tree anyway.
No initdb forced since no stored-on-disk structures changed, but you
will need a full recompile because of node-numbering changes.
instead of only one. This should speed up planning (only one hash path
to consider for a given pair of relations) as well as allow more effective
hashing, when there are multiple hashable joinclauses.
just done for copyfuncs/equalfuncs. Read functions in particular get
a lot shorter than before, and it's much easier to compare an out function
with the corresponding read function to make sure they agree.
initdb forced due to small changes in nodestring format (regularizing
a few cases that were formerly idiosyncratic).
joinclauses is determined accurately for each join. Formerly, the code only
considered joinclauses that used all of the rels from the outer side of the
join; thus for example
FROM (a CROSS JOIN b) JOIN c ON (c.f1 = a.x AND c.f2 = b.y)
could not exploit a two-column index on c(f1,f2), since neither of the
qual clauses would be in the joininfo list it looked in. The new code does
this correctly, and also is able to eliminate redundant clauses, thus fixing
the problem noted 24-Oct-02 by Hans-Jürgen Schönig.
before commit, not after :-( --- the original coding is not only unsafe
if an error occurs while it's processing, but it generates an invalid
sequence of WAL entries. Resurrect 7.2 logic for deleting items when
no longer needed. Use an enum instead of random macros. Editorialize
on names used for routines and constants. Teach backend/nodes routines
about new field in CreateTable struct. Add a regression test.
node now does its own grouping of the input rows, and has no need for a
preceding GROUP node in the plan pipeline. This allows elimination of
the misnamed tuplePerGroup option for GROUP, and actually saves more code
in nodeGroup.c than it costs in nodeAgg.c, as well as being presumably
faster. Restructure the API of query_planner so that we do not commit to
using a sorted or unsorted plan in query_planner; instead grouping_planner
makes the decision. (Right now it isn't any smarter than query_planner
was, but that will change as soon as it has the option to select a hash-
based aggregation step.) Despite all the hackery, no initdb needed since
only in-memory node types changed.
to be flexible about assignment casts without introducing ambiguity in
operator/function resolution. Introduce a well-defined promotion hierarchy
for numeric datatypes (int2->int4->int8->numeric->float4->float8).
Change make_const to initially label numeric literals as int4, int8, or
numeric (never float8 anymore).
Explicitly mark Func and RelabelType nodes to indicate whether they came
from a function call, explicit cast, or implicit cast; use this to do
reverse-listing more accurately and without so many heuristics.
Explicit casts to char, varchar, bit, varbit will truncate or pad without
raising an error (the pre-7.2 behavior), while assigning to a column without
any explicit cast will still raise an error for wrong-length data like 7.3.
This more nearly follows the SQL spec than 7.2 behavior (we should be
reporting a 'completion condition' in the explicit-cast cases, but we have
no mechanism for that, so just do silent truncation).
Fix some problems with enforcement of typmod for array elements;
it didn't work at all in 'UPDATE ... SET array[n] = foo', for example.
Provide a generalized array_length_coerce() function to replace the
specialized per-array-type functions that used to be needed (and were
missing for NUMERIC as well as all the datetime types).
Add missing conversions int8<->float4, text<->numeric, oid<->int8.
initdb forced.
type for runtime constraint checks, instead of misusing the parse-time
Constraint node for the purpose. Fix some damage introduced into type
coercion logic; in particular ensure that a coerced expression tree will
read out the correct result type when inspected (patch had broken some
RelabelType cases). Enforce domain NOT NULL constraints against columns
that are omitted from an INSERT.
column additions, deletions, and renames that would let a child table
get out of sync with its parent. Patch by Alvaro Herrera, with some
kibitzing by Tom Lane.
array header, and to compute sizing and alignment of array elements
the same way normal tuple access operations do --- viz, using the
tupmacs.h macros att_addlength and att_align. This makes the world
safe for arrays of cstrings or intervals, and should make it much
easier to write array-type-polymorphic functions; as examples see
the cleanups of array_out and contrib/array_iterator. By Joe Conway
and Tom Lane.
latent wrong-struct-type bugs and makes the coding style more uniform,
since the majority of places working with lists of column names were
already using Strings not Idents. While at it, remove vestigial
support for Stream node type, and otherwise-unreferenced nodes.h entries
for T_TupleCount and T_BaseNode.
NB: full recompile is recommended due to changes of Node type numbers.
This shouldn't force an initdb though.
> l.mode, l.isgranted from pg_lock_info() as l(relation oid, database oid,
> backendpid int4, mode text, isgranted bool);
> ERROR: badly formatted planstring "COLUMNDEF "...
>
Reported by Neil Conway -- I never implemented readfuncs.c support for
ColumnDef or TypeName, which is needed so that views can be created on
functions returning type RECORD. Here's a patch.
Joe Conway
types for Table Functions, as previously proposed on HACKERS. Here is a
brief explanation:
1. Creates a new pg_type typtype: 'p' for pseudo type (currently either
'b' for base or 'c' for catalog, i.e. a class).
2. Creates new builtin type of typtype='p' named RECORD. This is the
first of potentially several pseudo types.
3. Modify FROM clause grammer to accept:
SELECT * FROM my_func() AS m(colname1 type1, colname2 type1, ...)
where m is the table alias, colname1, etc are the column names, and
type1, etc are the column types.
4. When typtype == 'p' and the function return type is RECORD, a list
of column defs is required, and when typtype != 'p', it is
disallowed.
5. A check was added to ensure that the tupdesc provide via the parser
and the actual return tupdesc match in number and type of
attributes.
When creating a function you can do:
CREATE FUNCTION foo(text) RETURNS setof RECORD ...
When using it you can do:
SELECT * from foo(sqlstmt) AS (f1 int, f2 text, f3 timestamp)
or
SELECT * from foo(sqlstmt) AS f(f1 int, f2 text, f3 timestamp)
or
SELECT * from foo(sqlstmt) f(f1 int, f2 text, f3 timestamp)
Included in the patches are adjustments to the regression test sql and
expected files, and documentation.
p.s.
This potentially solves (or at least improves) the issue of builtin
Table Functions. They can be bootstrapped as returning RECORD, and
we can wrap system views around them with properly specified column
defs. For example:
CREATE VIEW pg_settings AS
SELECT s.name, s.setting
FROM show_all_settings()AS s(name text, setting text);
Then we can also add the UPDATE RULE that I previously posted to
pg_settings, and have pg_settings act like a virtual table, allowing
settings to be queried and set.
Joe Conway
Implements between (symmetric / asymmetric) as a node.
Executes the left or right expression once, makes a Const out of the
resulting Datum and executes the >=, <= portions out of the Const sets.
Of course, the parser does a fair amount of preparatory work for this to
happen.
Rod Taylor
pg_relcheck is gone; CHECK, UNIQUE, PRIMARY KEY, and FOREIGN KEY
constraints all have real live entries in pg_constraint. pg_depend
exists, and RESTRICT/CASCADE options work on most kinds of DROP;
however, pg_depend is not yet very well populated with dependencies.
(Most of the ones that are present at this point just replace formerly
hardwired associations, such as the implicit drop of a relation's pg_type
entry when the relation is dropped.) Need to add more logic to create
dependency entries, improve pg_dump to dump constraints in place of
indexes and triggers, and add some regression tests.
Reused the Expr node to hold DISTINCT which strongly resembles
the existing OP info. Define DISTINCT_EXPR which strongly resembles
the existing OPER_EXPR opType, but with handling for NULLs required
by SQL99.
We have explicit support for single-element DISTINCT comparisons
all the way through to the executor. But, multi-element DISTINCTs
are handled by expanding into a comparison tree in gram.y as is done for
other row comparisons. Per discussions, it might be desirable to move
this into one or more purpose-built nodes to be handled in the backend.
Define the optional ROW keyword and token per SQL99.
This allows single-element row constructs, which were formerly disallowed
due to shift/reduce conflicts with parenthesized a_expr clauses.
Define the SQL99 TREAT() function. Currently, use as a synonym for CAST().
returns-set boolean field in Func and Oper nodes. This allows cleaner,
more reliable tests for expressions returning sets in the planner and
parser. For example, a WHERE clause returning a set is now detected
and complained of in the parser, not only at runtime.
some kibitzing from Tom Lane. Not everything works yet, and there's
no documentation or regression test, but let's commit this so Joe
doesn't need to cope with tracking changes in so many files ...
lists to join RTEs, attach a list of Vars and COALESCE expressions that will
replace the join's alias variables during planning. This simplifies
flatten_join_alias_vars while still making it easy to fix up varno references
when transforming the query tree. Add regression test cases for interactions
of subqueries with outer joins.
an 'opclass owner' column in pg_opclass. Nothing is done with it at
present, but since there are plans to invent a CREATE OPERATOR CLASS
command soon, we'll probably want DROP OPERATOR CLASS too, which
suggests that a notion of ownership would be a good idea.