There was a wild mix of calling conventions: Some were declared to
return void and didn't return, some returned an int exit code, some
claimed to return an exit code, which the callers checked, but
actually never returned, and so on.
Now all of these functions are declared to return void and decorated
with attribute noreturn and don't return. That's easiest, and most
code already worked that way.
This simplifies code that needs to do arithmetic on XLogRecPtrs.
To avoid changing on-disk format of data pages, the LSN on data pages is
still stored in the old format. That should keep pg_upgrade happy. However,
we have XLogRecPtrs embedded in the control file, and in the structs that
are sent over the replication protocol, so this changes breaks compatibility
of pg_basebackup and server. I didn't do anything about this in this patch,
per discussion on -hackers, the right thing to do would to be to change the
replication protocol to be architecture-independent, so that you could use
a newer version of pg_receivexlog, for example, against an older server
version.
The comments claimed that wasting the last segment made it easier to do
calculations with XLogRecPtrs, because you don't have problems representing
last-byte-position-plus-1 that way. In my experience, however, it only made
things more complicated, because the there was two ways to represent the
boundary at the beginning of a logical log file: logid = n+1 and xrecoff = 0,
or as xlogid = n and xrecoff = 4GB - XLOG_SEG_SIZE. Some functions were
picky about which representation was used.
Also, use a 64-bit segment number instead of the log/seg combination, to
point to a certain WAL segment. We assume that all platforms have a working
64-bit integer type nowadays.
This is an incompatible change in WAL format, so bumping WAL version number.
Replication occurs only to memory on standby, not to disk,
so provides additional performance if user wishes to
reduce durability level slightly. Adds concept of multiple
independent sync rep queues.
Fujii Masao and Simon Riggs
This speeds up snapshot-taking and reduces ProcArrayLock contention.
Also, the PGPROC (and PGXACT) structures used by two-phase commit are
now allocated as part of the main array, rather than in a separate
array, and we keep ProcArray sorted in pointer order. These changes
are intended to minimize the number of cache lines that must be pulled
in to take a snapshot, and testing shows a substantial increase in
performance on both read and write workloads at high concurrencies.
Pavan Deolasee, Heikki Linnakangas, Robert Haas
There's no need to clamp the standby's xmin to be greater than
GetOldestXmin's result; if there were any such need this logic would be
hopelessly inadequate anyway, because it fails to account for
within-database versus cluster-wide values of GetOldestXmin. So get rid of
that, and just rely on sanity-checking that the xmin is not wrapped around
relative to the nextXid counter. Also, don't reset the walsender's xmin if
the current feedback xmin is indeed out of range; that just creates more
problems than we already had. Lastly, don't bother to take the
ProcArrayLock; there's no need to do that to set xmin.
Also improve the comments about this in GetOldestXmin itself.
In oder to exit on SIGTERM when in non-walsender code,
such as do_pg_stop_backup(), we need to set the interrupt
variables that are used there, and not just the walsender
local ones.
As per my recent proposal, this refactors things so that these typedefs and
macros are available in a header that can be included in frontend-ish code.
I also changed various headers that were undesirably including
utils/timestamp.h to include datatype/timestamp.h instead. Unsurprisingly,
this showed that half the system was getting utils/timestamp.h by way of
xlog.h.
No actual code changes here, just header refactoring.
Adds additional test for active walsenders and closes a race
condition for when we failover when a new walsender was connecting.
Reported and fixed bu Fujii Masao. Review by Heikki Linnakangas
walsender.h should depend on xlog.h, not vice versa. (Actually, the
inclusion was circular until a couple hours ago, which was even sillier;
but Bruce broke it in the expedient rather than logically correct
direction.) Because of that poor decision, plus blind application of
pgrminclude, we had a situation where half the system was depending on
xlog.h to include such unrelated stuff as array.h and guc.h. Clean up
the header inclusion, and manually revert a lot of what pgrminclude had
done so things build again.
This episode reinforces my feeling that pgrminclude should not be run
without adult supervision. Inclusion changes in header files in particular
need to be reviewed with great care. More generally, it'd be good if we
had a clearer notion of module layering to dictate which headers can sanely
include which others ... but that's a big task for another day.
The latch infrastructure is now capable of detecting all cases where the
walsender loop needs to wake up, so there is no reason to have an arbitrary
timeout.
Also, modify the walsender loop logic to follow the standard pattern of
ResetLatch, test for work to do, WaitLatch. The previous coding was both
hard to follow and buggy: it would sometimes busy-loop despite having
nothing available to do, eg between receipt of a signal and the next time
it was caught up with new WAL, and it also had interesting choices like
deciding to update to WALSNDSTATE_STREAMING on the strength of information
known to be obsolete.
In pursuit of this (and with the expectation that WaitLatch will be needed
in more places), convert the latch field that was already added to PGPROC
for sync rep into a generic latch that is activated for all PGPROC-owning
processes, and change many of the standard backend signal handlers to set
that latch when a signal happens. This will allow WaitLatch callers to be
wakened properly by these signals.
In passing, fix a whole bunch of signal handlers that had been hacked to do
things that might change errno, without adding the necessary save/restore
logic for errno. Also make some minor fixes in unix_latch.c, and clean
up bizarre and unsafe scheme for disowning the process's latch. Much of
this has to be back-patched into 9.1.
Peter Geoghegan, with additional work by Tom
The original definition had the problem that timeouts exceeding about 2100
seconds couldn't be specified on 32-bit machines. Milliseconds seem like
sufficient resolution, and finer grain than that would be fantasy anyway
on many platforms.
Back-patch to 9.1 so that this aspect of the latch API won't change between
9.1 and later releases.
Peter Geoghegan
Somebody thought it'd be cute to invent a set of Node tag numbers that were
defined independently of, and indeed conflicting with, the main tag-number
list. While this accidentally failed to fail so far, it would certainly
lead to trouble as soon as anyone wanted to, say, apply copyObject to these
node types. Clang was already complaining about the use of makeNode on
these tags, and I think quite rightly so. Fix by pushing these node
definitions into the mainstream, including putting replnodes.h where it
belongs.
Standby servers can now have WALSender processes, which can work with
either WALReceiver or archive_commands to pass data. Fully updated
docs, including new conceptual terms of sending server, upstream and
downstream servers. WALSenders terminated when promote to master.
Fujii Masao, review, rework and doc rewrite by Simon Riggs
detect postmaster death. Postmaster keeps the write-end of the pipe open,
so when it dies, children get EOF in the read-end. That can conveniently
be waited for in select(), which allows eliminating some of the polling
loops that check for postmaster death. This patch doesn't yet change all
the loops to use the new mechanism, expect a follow-on patch to do that.
This changes the interface to WaitLatch, so that it takes as argument a
bitmask of events that it waits for. Possible events are latch set, timeout,
postmaster death, and socket becoming readable or writeable.
The pipe method behaves slightly differently from the kill() method
previously used in PostmasterIsAlive() in the case that postmaster has died,
but its parent has not yet read its exit code with waitpid(). The pipe
returns EOF as soon as the process dies, but kill() continues to return
true until waitpid() has been called (IOW while the process is a zombie).
Because of that, change PostmasterIsAlive() to use the pipe too, otherwise
WaitLatch() would return immediately with WL_POSTMASTER_DEATH, while
PostmasterIsAlive() would claim it's still alive. That could easily lead to
busy-waiting while postmaster is in zombie state.
Peter Geoghegan with further changes by me, reviewed by Fujii Masao and
Florian Pflug.
If a smart shutdown occurs just as a child is starting up, and the
child subsequently becomes a walsender, there is a race condition:
the postmaster might count the exstant backends, determine that there
is one normal backend, and wait for it to die off. Had the walsender
transition already occurred before the postmaster counted, it would
have proceeded with the shutdown.
To fix this, have each child that transforms into a walsender kick
the postmaster just after doing so, so that the state machine is
certain to advance.
Fujii Masao
than replication_timeout (a new GUC) milliseconds. The TCP timeout is often
too long, you want the master to notice a dead connection much sooner.
People complained about that in 9.0 too, but with synchronous replication
it's even more important to notice dead connections promptly.
Fujii Masao and Heikki Linnakangas
If a standby is broadcasting reply messages and we have named
one or more standbys in synchronous_standby_names then allow
users who set synchronous_replication to wait for commit, which
then provides strict data integrity guarantees. Design avoids
sending and receiving transaction state information so minimises
bookkeeping overheads. We synchronize with the highest priority
standby that is connected and ready to synchronize. Other standbys
can be defined to takeover in case of standby failure.
This version has very strict behaviour; more relaxed options
may be added at a later date.
Simon Riggs and Fujii Masao, with reviews by Yeb Havinga, Jaime
Casanova, Heikki Linnakangas and Robert Haas, plus the assistance
of many other design reviewers.
Standby optionally sends back information about oldestXmin of queries
which is then checked and applied to the WALSender's proc->xmin.
GetOldestXmin() is modified slightly to agree with GetSnapshotData(),
so that all backends on primary include WALSender within their snapshots.
Note this does nothing to change the snapshot xmin on either master or
standby. Feedback piggybacks on the standby reply message.
vacuum_defer_cleanup_age is no longer used on standby, though parameter
still exists on primary, since some use cases still exist.
Simon Riggs, review comments from Fujii Masao, Heikki Linnakangas, Robert Haas
the standby has written, flushed, and applied the WAL. At the moment, this
is for informational purposes only, the values are only shown in
pg_stat_replication system view, but in the future they will also be needed
for synchronous replication.
Extracted from Simon riggs' synchronous replication patch by Robert Haas, with
some tweaking by me.
Add the current xlog insert location to the response of
IDENTIFY_SYSTEM, and adds result sets containing start
and stop location of backups to BASE_BACKUP responses.
When included, this makes the base backup a complete working
"clone" of the initial database, ready to have a postmaster
started against it without the need to set up any log archiving
or similar.
Magnus Hagander, reviewed by Fujii Masao and Heikki Linnakangas
While doing this, also move base backup options into
a struct instead of increasing the number of parameters
to multiple functions for each new option.
This tool makes it possible to do the pg_start_backup/
copy files/pg_stop_backup step in a single command.
There are still some steps to be done before this is a
complete backup solution, such as the ability to stream
the required WAL logs, but it's still usable, and
could do with some buildfarm coverage.
In passing, make the checkpoint request optionally
fast instead of hardcoding it.
Magnus Hagander, reviewed by Fujii Masao and Dimitri Fontaine
backend, as far as the postmaster shutdown logic is concerned. That means,
fast shutdown will wait for WAL sender processes to exit before signaling
bgwriter to finish. This avoids race conditions between a base backup stopping
or starting, and bgwriter writing the shutdown checkpoint WAL record. We don't
want e.g the end-of-backup WAL record to be written after the shutdown
checkpoint.
Makes it easier to parse mainly the BASE_BACKUP command
with it's options, and avoids having to manually deal
with quoted identifiers in the label (previously broken),
and makes it easier to add new commands and options in
the future.
In passing, refactor the case statement in the walsender
to put each command in it's own function.
When the exit waits until the whole backup completes, it may take
a very long time.
In passing, add back an error check in the main loop so we detect
clients that disconnect much earlier if the backup is large.
When in streaming mode we can never get out, so it will never
be required, but after a base backup (or other operations)
we can get back to the loop, so the title needs to be cleared.