I made multiple errors in commit 97532f7c29468010b87e40a04f8daa3eb097f654,
stemming mostly from failure to think about the available frequency data
as being element frequencies not value frequencies (so that occurrences of
different elements are not mutually exclusive). This led to sillinesses
such as estimating that "word" would match more rows than "word:*".
The choice to clamp to a minimum estimate of DEFAULT_TS_MATCH_SEL also
seems pretty ill-considered in hindsight, as it would frequently result in
an estimate much larger than the available data suggests. We do need some
sort of clamp, since a pattern not matching any of the MCELEMs probably
still needs a selectivity estimate of more than zero. I chose instead to
clamp to at least what a non-MCELEM word would be estimated as, preserving
the property that "word:*" doesn't get an estimate less than plain "word",
whether or not the word appears in MCELEM.
Per investigation of a gripe from Bill Martin, though I suspect that his
example case actually isn't even reaching the erroneous code.
Back-patch to 9.1 where this code was introduced.
validate_plperl_function() supposed that it could free an old
plperl_proc_desc struct immediately upon detecting that it was stale.
However, if a plperl function is called recursively, this could result
in deleting the struct out from under an outer invocation, leading to
misbehavior or crashes. Add a simple reference-count mechanism to
ensure that such structs are freed only when the last reference goes
away.
Per investigation of bug #7516 from Marko Tiikkaja. I am not certain
that this error explains his report, because he says he didn't have
any recursive calls --- but it's hard to see how else it could have
crashed right there. In any case, this definitely fixes some problems
in the area.
Back-patch to all active branches.
Investigation shows that some intermittent build failures in ecpg are the
result of a gmake bug that was reported quite some time ago:
http://savannah.gnu.org/bugs/?30653
Preventing parallel builds of the ecpg subdirectories seems to dodge the
bug. Per yesterday's pgsql-hackers discussion, there are some other things
in the subdirectory makefiles that seem rather unsafe for parallel builds
too, but there's little point in fixing them as long as we have to work
around a make bug.
Back-patch to 9.1; parallel builds weren't very well supported before
that anyway.
Commit 2cfb1c6f77734db81b6e74bcae630f93b94f69be fixed some issues caused
by Python 3.3 choosing to iterate through dict entries in a different order
than before. But here's another one: the test cases adjusted here made two
bad entries in a dict and expected the one complained of would always be
the same.
Possibly this should be back-patched further than 9.2, but there seems
little point unless the earlier fix is too.
Create an internal function pqDropConnection that does the physical socket
close and cleans up closely-associated state. This removes a bunch of ad
hoc, not always consistent closure code. The ulterior motive is to have a
single place to wait for a spawned child backend to exit, but this seems
like good cleanup even if that never happens.
I went back and forth on whether to include "conn->status = CONNECTION_BAD"
in pqDropConnection's actions, but for the moment decided not to. Only a
minority of the call sites actually want that, and in any case it's
arguable that conn->status is slightly higher-level state, and thus not
part of this function's purview.
This fix removes an unnecessary incompatibility with the old behavior of
the unix_socket_directory parameter. Since pathnames with embedded spaces
are fairly popular on some platforms, the incompatibility could be
significant in practice. We'll still strip unquoted leading/trailing
spaces, however.
No docs update since the documentation already implied that it worked
like this.
Per bug #7514 from Murray Cumming.
When the startup process restores a WAL file from the archive, it deletes
any old file with the same name and renames the new file in its place. On
Windows, however, when a file is deleted, it still lingers as long as a
process holds a file handle open on it. With cascading replication, a
walsender process can hold the old file open, so the rename() in the startup
process would fail. To fix that, rename the old file to a temporary name, to
make the original file name available for reuse, before deleting the old
file.
Give the correct name of the GUC parameter being complained of.
Also, emit a more suitable SQLSTATE (INVALID_PARAMETER_VALUE,
not the default INTERNAL_ERROR).
Gurjeet Singh, errcode adjustment by me
Perl, for some unaccountable reason, believes it's a good idea to reset
SIGFPE handling to SIG_IGN. Which wouldn't be a good idea even if it
worked; but on some platforms (Linux at least) it doesn't work at all,
instead resulting in forced process termination if the signal occurs.
Given the lack of other complaints, it seems safe to assume that Perl
never actually provokes SIGFPE and so there is no value in the setting
anyway. Hence, reset it to our normal handler after initializing Perl.
Report, analysis and patch by Andres Freund.
The planner previously assumed that parameter Vars having the same absolute
query level, varno, and varattno could safely be assigned the same runtime
PARAM_EXEC slot, even though they might be different Vars appearing in
different subqueries. This was (probably) safe before the introduction of
CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can
be executed during execution of some other subquery, causing the lifespan
of Params at the same syntactic nesting level as the CTE to overlap with
use of the same slots inside the CTE. In 9.1 we created additional hazards
by using the same parameter-assignment technology for nestloop inner scan
parameters, but it was broken before that, as illustrated by the added
regression test.
To fix, restructure the planner's management of PlannerParamItems so that
items having different semantic lifespans are kept rigorously separated.
This will probably result in complex queries using more runtime PARAM_EXEC
slots than before, but the slots are cheap enough that this hardly matters.
Also, stop generating PlannerParamItems containing Params for subquery
outputs: all we really need to do is reserve the PARAM_EXEC slot number,
and that now only takes incrementing a counter. The planning code is
simpler and probably faster than before, as well as being more correct.
Per report from Vik Reykja.
These changes will mostly also need to be made in the back branches, but
I'm going to hold off on that until after 9.2.0 wraps.
The cascading replication code assumed that the current RecoveryTargetTLI
never changes, but that's not true with recovery_target_timeline='latest'.
The obvious upshot of that is that RecoveryTargetTLI in shared memory needs
to be protected by a lock. A less obvious consequence is that when a
cascading standby is connected, and the standby switches to a new target
timeline after scanning the archive, it will continue to stream WAL to the
cascading standby, but from a wrong file, ie. the file of the previous
timeline. For example, if the standby is currently streaming from the middle
of file 000000010000000000000005, and the timeline changes, the standby
will continue to stream from that file. However, the WAL on the new
timeline is in file 000000020000000000000005, so the standby sends garbage
from 000000010000000000000005 to the cascading standby, instead of the
correct WAL from file 000000020000000000000005.
This also fixes a related bug where a partial WAL segment is restored from
the archive and streamed to a cascading standby. The code assumed that when
a WAL segment is copied from the archive, it can immediately be fully
streamed to a cascading standby. However, if the segment is only partially
filled, ie. has the right size, but only N first bytes contain valid WAL,
that's not safe. That can happen if a partial WAL segment is manually copied
to the archive, or if a partial WAL segment is archived because a server is
started up on a new timeline within that segment. The cascading standby will
get confused if the WAL it received is not valid, and will get stuck until
it's restarted. This patch fixes that problem by not allowing WAL restored
from the archive to be streamed to a cascading standby until it's been
replayed, and thus validated.
Serializable Snapshot Isolation used for serializable transactions
depends on acquiring SIRead locks on all heap relation tuples which
are used to generate the query result, so that a later delete or
update of any of the tuples can flag a read-write conflict between
transactions. This is normally handled in heapam.c, with tuple level
locking. Since an index-only scan avoids heap access in many cases,
building the result from the index tuple, the necessary predicate
locks were not being acquired for all tuples in an index-only scan.
To prevent problems with tuple IDs which are vacuumed and re-used
while the transaction still matters, the xmin of the tuple is part of
the tag for the tuple lock. Since xmin is not available to the
index-only scan for result rows generated from the index tuples, it
is not possible to acquire a tuple-level predicate lock in such
cases, in spite of having the tid. If we went to the heap to get the
xmin value, it would no longer be an index-only scan. Rather than
prohibit index-only scans under serializable transaction isolation,
we acquire an SIRead lock on the page containing the tuple, when it
was not necessary to visit the heap for other reasons.
Backpatch to 9.2.
Kevin Grittner and Tom Lane
Each setup block is run as a single PQexec submission, and some
statements such as VACUUM cannot be combined with others in such a
block.
Backpatch to 9.2.
Kevin Grittner and Tom Lane
The same message is used in both pg_restore and pg_dump, and it's
confusing to output "restoring data for table xyz" when the user
is just doing a pg_dump.
This gets rid of a dangerous-looking use of the not-volatile XLogCtl
pointer in a couple of spinlock-protected sections, where the normal
coding rule is that you should only access shared memory through a
pointer-to-volatile. I think the risk is only hypothetical not actual,
since for there to be a bug the compiler would have to move the spinlock
acquire or release across the memcpy() call, which one sincerely hopes
it will not. Still, it looks cleaner this way.
Per comment from Daniel Farina and subsequent discussion.
Formerly it would only show them for relkinds 'r' and 'f' (plain tables
and foreign tables). However, as of 9.2, views can also have reloptions,
namely security_barrier. The relkind restriction seems pointless and
not at all future-proof, so just print reloptions whenever there are any.
In passing, make some cosmetic improvements to the code that pulls the
"tableinfo" fields out of the PGresult.
Noted and patched by Dean Rasheed, with adjustment for all relkinds by me.
We can detect whether the planner top level is going to care at all about
cheap startup cost (it will only do so if query_planner's tuple_fraction
argument is greater than zero). If it isn't, we might as well discard
paths immediately whose only advantage over others is cheap startup cost.
This turns out to get rid of quite a lot of paths in complex queries ---
I saw planner runtime reduction of more than a third on one large query.
Since add_path isn't currently passed the PlannerInfo "root", the easiest
way to tell it whether to do this was to add a bool flag to RelOptInfo.
That's a bit redundant, since all relations in a given query level will
have the same setting. But in the future it's possible that we'd refine
the control decision to work on a per-relation basis, so this seems like
a good arrangement anyway.
Per my suggestion of a few months ago.
If a PlaceHolderVar contains a pulled-up LATERAL reference, its minimum
possible evaluation level might be higher in the join tree than its
original syntactic location. That in turn affects the ph_needed level for
any contained PlaceHolderVars (that is, those PHVs had better propagate up
the join tree at least to the evaluation level of the outer PHV). We got
this mostly right, but mark_placeholder_maybe_needed() failed to account
for the effect, and in consequence could leave the inner PHVs with
ph_may_need less than what their ultimate ph_needed value will be. That's
bad because it could lead to failure to select a join order that will allow
evaluation of the inner PHV at a valid location. Fix that, and add an
Assert that checks that we don't ever set ph_needed to more than
ph_may_need.
Only warn when connecting to a newer server, since connecting to older
servers works pretty well nowadays. Also update the documentation a
little about current psql/server compatibility expectations.
This was removed in commit cd004067742ee16ee63e55abfb4acbd5f09fbaab,
we're not quite sure why, but there have been reports of crashes due
to AS Perl being built with it when we are not, and it certainly
seems like the right thing to do. There is still some uncertainty
as to why it sometimes fails and sometimes doesn't.
Original patch from Owais Khani, substantially reworked and
extended by Andrew Dunstan.
The LATERAL implementation is now basically complete, and I still don't
see a cost-effective way to make an exact qual scope cross-check in the
presence of LATERAL. However, I did add a PlannerInfo.hasLateralRTEs flag
along the way, so it's easy to make the check only when not hasLateralRTEs.
That seems to still be useful, and it beats having no check at all.
We previously supposed that any given platform would supply both or neither
of these functions, so that one configure test would be sufficient. It now
appears that at least on AIX this is not the case ... which is likely an
AIX bug, but nonetheless we need to cope with it. So use separate tests.
Per bug #6758; thanks to Andrew Hastie for doing the followup testing
needed to confirm what was happening.
Backpatch to 9.1, where we began using these functions.
This is mostly cosmetic, but it does eliminate a speculative portability
issue. The previous coding ignored the fact that sum_grow could easily
overflow (in fact, it could be summing multiple IEEE float infinities).
On a platform where that didn't guarantee to produce a positive result,
the code would misbehave. In any case, it was less than readable.
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
Given a query such as
SELECT * FROM foo JOIN LATERAL (SELECT foo.var1) ss(x) ON ss.x = foo.var2
the existence of the join clause "ss.x = foo.var2" encourages indxpath.c to
build a parameterized path for foo using any index available for foo.var2.
This is completely useless activity, though, since foo has got to be on the
outside not the inside of any nestloop join with ss. It's reasonably
inexpensive to add tests that prevent creation of such paths, so let's do
that.
Every time the best-tuple-found-so-far changes, we need to reset all
the penalty values in which_grow[] to the penalties for the new best
tuple. The old code failed to do this, resulting in inferior index
quality.
The original patch from Alexander Korotkov was just two lines; I took
the liberty of fleshing that out by adding a bunch of comments that I
hope will make this logic easier for others to understand than it was
for me.
push_child_plan/pop_child_plan didn't bother to adjust the "ancestors"
list of parent plan nodes when descending to a child plan node. I think
this was okay when it was written, but it's not okay in the presence of
LATERAL references, since a subplan node could easily be returning a
LATERAL value back up to the same nestloop node that provides the value.
Per changed regression test results, the omission led to failure to
interpret Param nodes that have perfectly good interpretations.
In the initial cut at LATERAL, I kept the rule that cheapest_total_path
was always unparameterized, which meant it had to be NULL if the relation
has no unparameterized paths. It turns out to work much more nicely if
we always have *some* path nominated as cheapest-total for each relation.
In particular, let's still say it's the cheapest unparameterized path if
there is one; if not, take the cheapest-total-cost path among those of
the minimum available parameterization. (The first rule is actually
a special case of the second.)
This allows reversion of some temporary lobotomizations I'd put in place.
In particular, the planner can now consider hash and merge joins for
joins below a parameter-supplying nestloop, even if there aren't any
unparameterized paths available. This should bring planning of
LATERAL-containing queries to the same level as queries not using that
feature.
Along the way, simplify management of parameterized paths in add_path()
and friends. In the original coding for parameterized paths in 9.2,
I tried to minimize the logic changes in add_path(), so it just treated
parameterization as yet another dimension of comparison for paths.
We later made it ignore pathkeys (sort ordering) of parameterized paths,
on the grounds that ordering isn't a useful property for the path on the
inside of a nestloop, so we might as well get rid of useless parameterized
paths as quickly as possible. But we didn't take that reasoning as far as
we should have. Startup cost isn't a useful property inside a nestloop
either, so add_path() ought to discount startup cost of parameterized paths
as well. Having done that, the secondary sorting I'd implemented (in
add_parameterized_path) is no longer needed --- any parameterized path that
survives add_path() at all is worth considering at higher levels. So this
should be a bit faster as well as simpler.
This includes two micro-optimizations to the tight inner loop in descending
the SP-GiST tree: 1. avoid an extra function call to index_getprocinfo when
calling user-defined choose function, and 2. avoid a useless palloc+pfree
when node labels are not used.
The heapam XLog functions are used by other modules, not all of which
are interested in the rest of the heapam API. With this, we let them
get just the XLog stuff in which they are interested and not pollute
them with unrelated includes.
Also, since heapam.h no longer requires xlog.h, many files that do
include heapam.h no longer get xlog.h automatically, including a few
headers. This is useful because heapam.h is getting pulled in by
execnodes.h, which is in turn included by a lot of files.