In commit e2c2c2e8b1df7dfdb01e7e6f6191a569ce3c3195 I made use of nested
list structures to show which clauses went with which index columns, but
on reflection that's a data structure that only an old-line Lisp hacker
could love. Worse, it adds unnecessary complication to the many places
that don't much care which clauses go with which index columns. Revert
to the previous arrangement of flat lists of clauses, and instead add a
parallel integer list of column numbers. The places that care about the
pairing can chase both lists with forboth(), while the places that don't
care just examine one list the same as before.
The only real downside to this is that there are now two more lists that
need to be passed to amcostestimate functions in case they care about
column matching (which btcostestimate does, so not passing the info is not
an option). Rather than deal with 11-argument amcostestimate functions,
pass just the IndexPath and expect the functions to extract fields from it.
That gets us down to 7 arguments which is better than 11, and it seems
more future-proof against likely additions to the information we keep
about an index path.
It's potentially useful for an index to repeat the same indexable column
or expression in multiple index columns, if the columns have different
opclasses. (If they share opclasses too, the duplicate column is pretty
useless, but nonetheless we've allowed such cases since 9.0.) However,
the planner failed to cope with this, because createplan.c was relying on
simple equal() matching to figure out which index column each index qual
is intended for. We do have that information available upstream in
indxpath.c, though, so the fix is to not flatten the multi-level indexquals
list when putting it into an IndexPath. Then we can rely on the sublist
structure to identify target index columns in createplan.c. There's a
similar issue for index ORDER BYs (the KNNGIST feature), so introduce a
multi-level-list representation for that too. This adds a bit more
representational overhead, but we might more or less buy that back by not
having to search for matching index columns anymore in createplan.c;
likewise btcostestimate saves some cycles.
Per bug #6351 from Christian Rudolph. Likely symptoms include the "btree
index keys must be ordered by attribute" failure shown there, as well as
"operator MMMM is not a member of opfamily NNNN".
Although this is a pre-existing problem that can be demonstrated in 9.0 and
9.1, I'm not going to back-patch it, because the API changes in the planner
seem likely to break things such as index plugins. The corner cases where
this matters seem too narrow to justify possibly breaking things in a minor
release.
The need for this was debated when we put in the index-only-scan feature,
but at the time we had no near-term expectation of having AMs that could
support such scans for only some indexes; so we kept it simple. However,
the SP-GiST AM forces the issue, so let's fix it.
This patch only installs the new API; no behavior actually changes.
If the right-hand side of a semijoin is unique, then we can treat it like a
normal join (or another way to say that is: we don't need to explicitly
unique-ify the data before doing it as a normal join). We were recognizing
such cases when the RHS was a sub-query with appropriate DISTINCT or GROUP
BY decoration, but there's another way: if the RHS is a plain relation with
unique indexes, we can check if any of the indexes prove the output is
unique. Most of the infrastructure for that was there already in the join
removal code, though I had to rearrange it a bit. Per reflection about a
recent example in pgsql-performance.
The uniqueness condition might fail to hold intra-transaction, and assuming
it does can give incorrect query results. Per report from Marti Raudsepp,
though this is not his proposed patch.
Back-patch to 9.0, where both these features were introduced. In the
released branches, add the new IndexOptInfo field to the end of the struct,
to try to minimize ABI breakage for third-party code that may be examining
that struct.
This commit changes index-only scans so that data is read directly from the
index tuple without first generating a faux heap tuple. The only immediate
benefit is that indexes on system columns (such as OID) can be used in
index-only scans, but this is necessary infrastructure if we are ever to
support index-only scans on expression indexes. The executor is now ready
for that, though the planner still needs substantial work to recognize
the possibility.
To do this, Vars in index-only plan nodes have to refer to index columns
not heap columns. I introduced a new special varno, INDEX_VAR, to mark
such Vars to avoid confusion. (In passing, this commit renames the two
existing special varnos to OUTER_VAR and INNER_VAR.) This allows
ruleutils.c to handle them with logic similar to what we use for subplan
reference Vars.
Since index-only scans are now fundamentally different from regular
indexscans so far as their expression subtrees are concerned, I also chose
to change them to have their own plan node type (and hence, their own
executor source file).
When a btree index contains all columns required by the query, and the
visibility map shows that all tuples on a target heap page are
visible-to-all, we don't need to fetch that heap page. This patch depends
on the previous patches that made the visibility map reliable.
There's a fair amount left to do here, notably trying to figure out a less
chintzy way of estimating the cost of an index-only scan, but the core
functionality seems ready to commit.
Robert Haas and Ibrar Ahmed, with some previous work by Heikki Linnakangas.
If an indexable operator for a non-collatable indexed datatype has a
collatable right-hand input type, any OpExpr for it will be marked with a
nonzero inputcollid (since having one collatable input is sufficient to
make that happen). However, an index on a non-collatable column certainly
doesn't have any collation. This caused us to fail to match such operators
to their indexes, because indxpath.c required an exact match of index
collation and clause collation. It seems correct to allow a match when the
index is collation-less regardless of the clause's inputcollid: an operator
with both noncollatable and collatable inputs could perhaps depend on the
collation of the collatable input, but it could hardly expect the index for
the noncollatable input to have that same collation.
Per bug #6232 from Pierre Ducroquet. His example is specifically about
"hstore ? text" but the problem seems quite generic.
Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
This is necessary, not optional, now that ILIKE and regexes are collation
aware --- else we might derive a wrong comparison constant for index
optimized pattern matches.
Get rid of bogus collation test in match_special_index_operator (even for
ILIKE, the pattern match operator's collation doesn't matter here, and even
if it did the test was testing the wrong thing).
Fix broken looping logic in expand_indexqual_rowcompare.
Add collation check in match_clause_to_ordering_op.
Make naming and argument ordering more consistent; improve comments.
In nearly all cases, the caller already knows the correct collation, and
in a number of places, the value the caller has handy is more correct than
the default for the type would be. (In particular, this patch makes it
significantly less likely that eval_const_expressions will result in
changing the exposed collation of an expression.) So an internal lookup
is both expensive and wrong.
Instead of playing cute games with pathkeys, just build a direct
representation of the intended sub-select, and feed it through
query_planner to get a Path for the index access. This is a bit slower
than 9.1's previous method, since we'll duplicate most of the overhead of
query_planner; but since the whole optimization only applies to rather
simple single-table queries, that probably won't be much of a problem in
practice. The advantage is that we get to do the right thing when there's
a partial index that needs the implicit IS NOT NULL clause to be usable.
Also, although this makes planagg.c be a bit more closely tied to the
ordering of operations in grouping_planner, we can get rid of some coupling
to lower-level parts of the planner. Per complaint from Marti Raudsepp.
All expression nodes now have an explicit output-collation field, unless
they are known to only return a noncollatable data type (such as boolean
or record). Also, nodes that can invoke collation-aware functions store
a separate field that is the collation value to pass to the function.
This avoids confusion that arises when a function has collatable inputs
and noncollatable output type, or vice versa.
Also, replace the parser's on-the-fly collation assignment method with
a post-pass over the completed expression tree. This allows us to use
a more complex (and hopefully more nearly spec-compliant) assignment
rule without paying for it in extra storage in every expression node.
Fix assorted bugs in the planner's handling of collations by making
collation one of the defining properties of an EquivalenceClass and
by converting CollateExprs into discardable RelabelType nodes during
expression preprocessing.
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
Per my note of a couple days ago, create_index_paths would refuse to
consider any path at all for GIN indexes if the selectivity estimate came
out as 1.0; not even if you tried to force it with enable_seqscan. While
this isn't really a bad outcome in practice, it could be annoying for
testing purposes. Adjust the test for "is this path only useful for
sorting" so that it doesn't fire on paths with nil pathkeys, which will
include all GIN paths.
This is a heavily revised version of builtin_knngist_core-0.9. The
ordering operators are no longer mixed in with actual quals, which would
have confused not only humans but significant parts of the planner.
Instead, ordering operators are carried separately throughout planning and
execution.
Since the API for ambeginscan and amrescan functions had to be changed
anyway, this commit takes the opportunity to rationalize that a bit.
RelationGetIndexScan no longer forces a premature index_rescan call;
instead, callers of index_beginscan must call index_rescan too. Aside from
making the AM-side initialization logic a bit less peculiar, this has the
advantage that we do not make a useless extra am_rescan call when there are
runtime key values. AMs formerly could not assume that the key values
passed to amrescan were actually valid; now they can.
Teodor Sigaev and Tom Lane
Formerly we looked up the operators associated with each index (caching
them in relcache) and then the planner looked up the btree opfamily
containing such operators in order to build the btree-centric pathkey
representation that describes the index's sort order. This is quite
pointless for btree indexes: we might as well just use the index's opfamily
information directly. That saves syscache lookup cycles during planning,
and furthermore allows us to eliminate the relcache's caching of operators
altogether, which may help in reducing backend startup time.
I added code to plancat.c to perform the same type of double lookup
on-the-fly if it's ever faced with a non-btree amcanorder index AM.
If such a thing actually becomes interesting for production, we should
replace that logic with some more-direct method for identifying the
corresponding btree opfamily; but it's not worth spending effort on now.
There is considerably more to do pursuant to my recent proposal to get rid
of sort-operator-based representations of sort orderings, but this patch
grabs some of the low-hanging fruit. I'll look at the remainder of that
work after the current commitfest.
We no longer need the terminating zero entry in opfamily[], so get rid of
it. Also replace assorted ad-hoc looping logic with simple for and foreach
constructs. This code is now noticeably more readable than it was an hour
ago; credit to Robert for seeing that it could be simplified.
8.2beta but never carried out. This avoids repetitive tests of whether the
argument is of scalar or composite type. Also, be a bit more paranoid about
composite arguments in some places where we previously weren't checking.
to be just a minor extension of the previous patch that made "x IS NULL"
indexable, because we can treat the IS NOT NULL condition as if it were
"x < NULL" or "x > NULL" (depending on the index's NULLS FIRST/LAST option),
just like IS NULL is treated like "x = NULL". Aside from any possible
usefulness in its own right, this is an important improvement for
index-optimized MAX/MIN aggregates: it is now reliably possible to get
a column's min or max value cheaply, even when there are a lot of nulls
cluttering the interesting end of the index.
is unique and is not referenced above the join. In this case the inner
side doesn't affect the query result and can be thrown away entirely.
Although perhaps nobody would ever write such a thing by hand, it's
a reasonably common case in machine-generated SQL.
The current implementation only recognizes the case where the inner side
is a simple relation with a unique index matching the query conditions.
This is enough for the use-cases that have been shown so far, but we
might want to try to handle other cases later.
Robert Haas, somewhat rewritten by Tom
Both hex format and the traditional "escape" format are automatically
handled on input. The output format is selected by the new GUC variable
bytea_output.
As committed, bytea_output defaults to HEX, which is an *incompatible
change*. We will keep it this way for awhile for testing purposes, but
should consider whether to switch to the more backwards-compatible
default of ESCAPE before 8.5 is released.
Peter Eisentraut
constants through full joins, as in
select * from tenk1 a full join tenk1 b using (unique1)
where unique1 = 42;
which should generate a fairly cheap plan where we apply the constraint
unique1 = 42 in each relation scan. This had been broken by my patch of
2008-06-27, which is now reverted in favor of a more invasive but hopefully
less incorrect approach. That patch was meant to prevent incorrect extraction
of OR'd indexclauses from OR conditions above an outer join. To do that
correctly we need more information than the outerjoin_delay flag can provide,
so add a nullable_relids field to RestrictInfo that records exactly which
relations are nulled by outer joins that are underneath a particular qual
clause. A side benefit is that we can make the test in create_or_index_quals
more specific: it is now smart enough to extract an OR'd indexclause into the
outer side of an outer join, even though it must not do so in the inner side.
The old coding couldn't distinguish these cases so it could not do either.
exact-match pattern (no wildcard) can be index-optimized in some cases where a
prefix-match pattern cannot; specifically, since the required index clause is
simple equality, it works for regular text/varchar indexes even when the
locale is not C. I'm not sure how often this case really comes up, but since
it requires hardly any additional work to handle it, we might as well get it
right. Motivated by a discussion on the JDBC list.
amgettuple or only implement amgetbitmap, instead of the former assumption
that every AM supports both APIs. Extracted with minor editorialization
from Teodor's fast-GIN-insert patch; whatever becomes of that, this seems
like a simple and reasonable generalization of the index AM interface spec.
unique for a particular query, if the index predicate is satisfied. This
requires a bit of reordering of operations so that we check the predicates
before doing any selectivity estimates, but shouldn't really cause any
noticeable slowdown. Per a comment from Michal Politowski.
though it is an inner rather than outer join type. This essentially means
that we don't bother to separate "pushed down" qual conditions from actual
join quals at a semijoin plan node; which is okay because the restrictions of
SQL syntax make it impossible to have a pushed-down qual that references the
inner side of a semijoin. This allows noticeably better optimization of
IN/EXISTS cases than we had before, since the equivalence-class machinery can
now use those quals. Also fix a couple of other mistakes that had essentially
disabled the ability to unique-ify the inner relation and then join it to just
a subset of the left-hand relations. An example case using the regression
database is
select * from tenk1 a, tenk1 b
where (a.unique1,b.unique2) in (select unique1,unique2 from tenk1 c);
which is planned reasonably well by 8.3 and earlier but had been forcing a
cartesian join of a/b in CVS HEAD.
btree. We can't easily tell whether clauses generated from the equivalence
class could be used with such an index, so just assume that they might be.
This bit of over-optimization prevented use of non-btree indexes for nestloop
inner indexscans, in any case where the join uses an equality operator that
is also a btree operator --- which in particular is typically true for hash
indexes. Noted while trying to test the current hash index patch.
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
the associated datatype as their equality member. This means that these
opclasses can now support plain equality comparisons along with LIKE tests,
thus avoiding the need for an extra index in some applications. This
optimization was not possible when the pattern opclasses were first introduced,
because we didn't insist that text equality meant bitwise equality; but we
do now, so there is no semantic difference between regular and pattern
equality operators.
I removed the name_pattern_ops opclass altogether, since it's really useless:
name's regular comparisons are just strcmp() and are unlikely to become
something different. Instead teach indxpath.c that btree name_ops can be
used for LIKE whether or not the locale is C. This might lead to a useful
speedup in LIKE queries on the system catalogs in non-C locales.
The ~=~ and ~<>~ operators are gone altogether. (It would have been nice to
keep them for backward compatibility's sake, but since the pg_amop structure
doesn't allow multiple equality operators per opclass, there's no way.)
A not-immediately-obvious incompatibility is that the sort order within
bpchar_pattern_ops indexes changes --- it had been identical to plain
strcmp, but is now trailing-blank-insensitive. This will impact
in-place upgrades, if those ever happen.
Per discussions a couple months ago.
no particular need to do get_op_opfamily_properties() while building an
indexscan plan. Postpone that lookup until executor start. This simplifies
createplan.c a lot more than it complicates nodeIndexscan.c, and makes things
more uniform since we already had to do it that way for RowCompare
expressions. Should be a bit faster too, at least for plans that aren't
re-used many times, since we avoid palloc'ing and perhaps copying the
intermediate list data structure.
strings. This patch introduces four support functions cstring_to_text,
cstring_to_text_with_len, text_to_cstring, and text_to_cstring_buffer, and
two macros CStringGetTextDatum and TextDatumGetCString. A number of
existing macros that provided variants on these themes were removed.
Most of the places that need to make such conversions now require just one
function or macro call, in place of the multiple notational layers that used
to be needed. There are no longer any direct calls of textout or textin,
and we got most of the places that were using handmade conversions via
memcpy (there may be a few still lurking, though).
This commit doesn't make any serious effort to eliminate transient memory
leaks caused by detoasting toasted text objects before they reach
text_to_cstring. We changed PG_GETARG_TEXT_P to PG_GETARG_TEXT_PP in a few
places where it was easy, but much more could be done.
Brendan Jurd and Tom Lane
make_greater_string() try harder to generate a string that's actually greater
than its input string. Before we just assumed that making a string that was
memcmp-greater was enough, but it is easy to generate examples where this is
not so when the locale is not C. Instead, loop until the relevant comparison
function agrees that the generated string is greater than the input.
Unfortunately this is probably not enough to guarantee that the generated
string is greater than all extensions of the input, so we cannot relax the
restriction to C locale for the LIKE/regex index optimization. But it should
at least improve the odds of getting a useful selectivity estimate in
prefix_selectivity(). Per example from Guillaume Smet.
Backpatch to 8.1, mainly because that's what the complainant is using...
cheapest-startup-cost innerjoin indexscans, and make joinpath.c consider
both of these (when different) as the inside of a nestloop join. The
original design was based on the assumption that indexscan paths always
have negligible startup cost, and so total cost is the only important
figure of merit; an assumption that's obviously broken by bitmap
indexscans. This oversight could lead to choosing poor plans in cases
where fast-start behavior is more important than total cost, such as
LIMIT and IN queries. 8.1-vintage brain fade exposed by an example from
Chuck D.