making pull_up_sublinks() construct a full-blown JoinExpr tree representation
of IN/EXISTS SubLinks that it is able to convert to semi or anti joins.
This makes pull_up_sublinks() a shade more complex, but the gain in semantic
clarity is worth it. I still have more to do in this area to address the
previously-discussed problems, but this commit in itself fixes at least one
bug in HEAD, as shown by added regression test case.
return the tableoid as well as the ctid for any FOR UPDATE targets that
have child tables. All child tables are listed in the ExecRowMark list,
but the executor just skips the ones that didn't produce the current row.
Curiously, this longstanding restriction doesn't seem to have been documented
anywhere; so no doc changes.
until vars are distributed to rels during query_planner() startup. We don't
really need it before that, and not building it early has some advantages.
First, we don't need to put it through the various preprocessing steps, which
saves some cycles and eliminates the need for a number of routines to support
PlaceHolderInfo nodes at all. Second, this means one less unused plan for any
sub-SELECT appearing in a placeholder's expression, since we don't build
placeholder_list until after sublink expansion is complete.
that represent some expression that we desire to compute below the top level
of the plan, and then let that value "bubble up" as though it were a plain
Var (ie, a column value).
The immediate application is to allow sub-selects to be flattened even when
they are below an outer join and have non-nullable output expressions.
Formerly we couldn't flatten because such an expression wouldn't properly
go to NULL when evaluated above the outer join. Now, we wrap it in a
PlaceHolderVar and arrange for the actual evaluation to occur below the outer
join. When the resulting Var bubbles up through the join, it will be set to
NULL if necessary, yielding the correct results. This fixes a planner
limitation that's existed since 7.1.
In future we might want to use this mechanism to re-introduce some form of
Hellerstein's "expensive functions" optimization, ie place the evaluation of
an expensive function at the most suitable point in the plan tree.
the column alias names of the RTE referenced by the Var to the RowExpr.
This is needed to allow ruleutils.c to correctly deparse FieldSelect nodes
referencing such a construct. Per my recent bug report.
Adding a field to RowExpr forces initdb (because of stored rules changes)
so this solution is not back-patchable; which is unfortunate because 8.2
and 8.3 have this issue. But it only affects EXPLAIN for some pretty odd
corner cases, so we can probably live without a solution for the back
branches.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.
There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly. But let's land
the patch now so we can get on with other development.
Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
most node types used in expression trees (both before and after parse
analysis). This allows us to place an error cursor in many situations
where we formerly could not, because the information wasn't available
beyond the very first level of parse analysis. There's a fair amount
of work still to be done to persuade individual ereport() calls to actually
include an error location, but this gets the initdb-forcing part of the
work out of the way; and the situation is already markedly better than
before for complaints about unimplementable implicit casts, such as
CASE and UNION constructs with incompatible alternative data types.
Per my proposal of a few days ago.
into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside
the backend. There's probably more that should be done along this line,
but this is a start anyway.
subqueries into the same thing you'd have gotten from IN (except always with
unknownEqFalse = true, so as to get the proper semantics for an EXISTS).
I believe this fixes the last case within CVS HEAD in which an EXISTS could
give worse performance than an equivalent IN subquery.
The tricky part of this is that if the upper query probes the EXISTS for only
a few rows, the hashing implementation can actually be worse than the default,
and therefore we need to make a cost-based decision about which way to use.
But at the time when the planner generates plans for subqueries, it doesn't
really know how many times the subquery will be executed. The least invasive
solution seems to be to generate both plans and postpone the choice until
execution. Therefore, in a query that has been optimized this way, EXPLAIN
will show two subplans for the EXISTS, of which only one will actually get
executed.
There is a lot more that could be done based on this infrastructure: in
particular it's interesting to consider switching to the hash plan if we start
out using the non-hashed plan but find a lot more upper rows going by than we
expected. I have therefore left some minor inefficiencies in place, such as
initializing both subplans even though we will currently only use one.
parent, not only those with RangeTblRefs. We need them in ExecCheckRTPerms.
Report by Brendan O'Shea. Back-patch to 8.2, where pull_up_simple_union_all
was introduced.
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
null::char(3) to a simple Const node. (It already worked for non-null values,
but not when we skipped evaluation of a strict coercion function.) This
prevents loss of typmod knowledge in situations such as exhibited in bug
#3598. Unfortunately there seems no good way to fix that bug in 8.1 and 8.2,
because they simply don't carry a typmod for a plain Const node.
In passing I made all the other callers of makeNullConst supply "real" typmod
values too, though I think it probably doesn't matter anywhere else.
Along the way, allow FOR UPDATE in non-WITH-HOLD cursors; there may once
have been a reason to disallow that, but it seems to work now, and it's
really rather necessary if you want to select a row via a cursor and then
update it in a concurrent-safe fashion.
Original patch by Arul Shaji, rather heavily editorialized by Tom Lane.
support both FOR UPDATE and FOR SHARE in one command, as well as both
NOWAIT and normal WAIT behavior. The more general code is actually
simpler and cleaner.
that apply the necessary domain constraint checks immediately. This fixes
cases where domain constraints went unchecked for statement parameters,
PL function local variables and results, etc. We can also eliminate existing
special cases for domains in places that had gotten it right, eg COPY.
Also, allow domains over domains (base of a domain is another domain type).
This almost worked before, but was disallowed because the original patch
hadn't gotten it quite right.
inheritance trees on-the-fly, which pretty well constrained us to considering
only one way of planning inheritance, expand inheritance sets during the
planner prep phase, and build a side data structure that can be consulted
later to find which RTEs are members of which inheritance sets. As proof of
concept, use the data structure to plan joins against inheritance sets more
efficiently: we can now use indexes on the set members in inner-indexscan
joins. (The generated plans could be improved further, but it'll take some
executor changes.) This data structure will also support handling UNION ALL
subqueries in the same way as inheritance sets, but that aspect of it isn't
finished yet.
a SubLink expression into a rule query. Pre-8.1 we essentially did this
unconditionally; 8.1 tries to do it only when needed, but was missing a
couple of cases. Per report from Kyle Bateman. Add some regression test
cases covering this area.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
Formerly, if such a clause contained no aggregate functions we mistakenly
treated it as equivalent to WHERE. Per spec it must cause the query to
be treated as a grouped query of a single group, the same as appearance
of aggregate functions would do. Also, the HAVING filter must execute
after aggregate function computation even if it itself contains no
aggregate functions.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
presence of dropped columns. Document the already-presumed fact that
eref aliases in relation RTEs are supposed to have entries for dropped
columns; cause the user alias structs to have such entries too, so that
there's always a one-to-one mapping to the underlying physical attnums.
Adjust expandRTE() and related code to handle the case where a column
that is part of a JOIN has been dropped. Generalize expandRTE()'s API
so that it can be used in a couple of places that formerly rolled their
own implementation of the same logic. Fix ruleutils.c to suppress
display of aliases for columns that were dropped since the rule was made.
to the physical layout of the rowtype, ie, there are dummy arguments
corresponding to any dropped columns in the rowtype. We formerly had a
couple of places that did it this way and several others that did not.
Fixes Gaetano Mendola's "cache lookup failed for type 0" bug of 5-Aug.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
rather than allowing them only in a few special cases as before. In
particular you can now pass a ROW() construct to a function that accepts
a rowtype parameter. Internal generation of RowExprs fixes a number of
corner cases that used to not work very well, such as referencing the
whole-row result of a JOIN or subquery. This represents a further step in
the work I started a month or so back to make rowtype values into
first-class citizens.
subquery that didn't previously have one. We have traditionally made
the caller of ResolveNew responsible for updating the hasSubLinks flag
of the outermost query, but this fails to account for hasSubLinks in
subqueries. Fix ResolveNew to handle this. We might later want to
change the calling convention of ResolveNew so that it can fix the
outer query too, simplifying callers. But I went with the localized
fix for now. Per bug report from J Smith, 20-Oct-03.
yet, though). Avoid using nth() to fetch tlist entries; provide a
common routine get_tle_by_resno() to search a tlist for a particular
resno. This replaces a couple uses of nth() and a dozen hand-coded
search loops. Also, replace a few uses of nth(length-1, list) with
llast().
query node, since that won't work unless the planner is upgraded.
Someday we should try to support at least some cases of this, but for
now just plug the hole in the dike. Per discussion with Dmitry Tkach.