Previously, it just returned the heap tuple count, which might be only an
estimate, and would be completely the wrong thing if the index is partial.
Since this function scans every index page anyway to find free pages,
it's practically free to count the surviving index tuples. Let's do that
and return an accurate count.
This is easily visible as a wrong reltuples value for a partial GiST
index following VACUUM, so back-patch to all supported branches.
Andrey Borodin, reviewed by Michail Nikolaev
Discussion: https://postgr.es/m/151956654251.6915.675951950408204404.pgcf@coridan.postgresql.org
As src/backend/access/transam/README says, PageGetLSN may only be called
by processes holding either exclusive lock on buffer, or a shared lock
on buffer plus buffer header lock. Therefore any place that only holds
a shared buffer lock must use BufferGetLSNAtomic instead of PageGetLSN,
which internally obtains buffer header lock prior to reading the LSN.
A few callsites failed to comply with this rule. This was detected by
running all tests under a new (not committed) assertion that verifies
PageGetLSN locking contract. All but one of the callsites that failed
the assertion are fixed by this patch. Remaining callsites were
inspected manually and determined not to need any change.
The exception (unfixed callsite) is in TestForOldSnapshot, which only
has a Page argument, making it impossible to access the corresponding
Buffer from it. Fixing that seems a much larger patch that will have to
be done separately; and that's just as well, since it was only
introduced in 9.6 and other bugs are much older.
Some of these bugs are ancient; backpatch all the way back to 9.3.
Authors: Jacob Champion, Asim Praveen, Ashwin Agrawal
Reviewed-by: Michaël Paquier
Discussion: https://postgr.es/m/CABAq_6GXgQDVu3u12mK9O5Xt5abBZWQ0V40LZCE+oUf95XyNFg@mail.gmail.com
The reverted changes were intended to force a choice of whether any
newly-added BufferGetPage() calls needed to be accompanied by a
test of the snapshot age, to support the "snapshot too old"
feature. Such an accompanying test is needed in about 7% of the
cases, where the page is being used as part of a scan rather than
positioning for other purposes (such as DML or vacuuming). The
additional effort required for back-patching, and the doubt whether
the intended benefit would really be there, have indicated it is
best just to rely on developers to do the right thing based on
comments and existing usage, as we do with many other conventions.
This change should have little or no effect on generated executable
code.
Motivated by the back-patching pain of Tom Lane and Robert Haas
This patch is a no-op patch which is intended to reduce the chances
of failures of omission once the functional part of the "snapshot
too old" patch goes in. It adds parameters for snapshot, relation,
and an enum to specify whether the snapshot age check needs to be
done for the page at this point. This initial patch passes NULL
for the first two new parameters and BGP_NO_SNAPSHOT_TEST for the
third. The follow-on patch will change the places where the test
needs to be made.
This patch reduces pg_am to just two columns, a name and a handler
function. All the data formerly obtained from pg_am is now provided
in a C struct returned by the handler function. This is similar to
the designs we've adopted for FDWs and tablesample methods. There
are multiple advantages. For one, the index AM's support functions
are now simple C functions, making them faster to call and much less
error-prone, since the C compiler can now check function signatures.
For another, this will make it far more practical to define index access
methods in installable extensions.
A disadvantage is that SQL-level code can no longer see attributes
of index AMs; in particular, some of the crosschecks in the opr_sanity
regression test are no longer possible from SQL. We've addressed that
by adding a facility for the index AM to perform such checks instead.
(Much more could be done in that line, but for now we're content if the
amvalidate functions more or less replace what opr_sanity used to do.)
We might also want to expose some sort of reporting functionality, but
this patch doesn't do that.
Alexander Korotkov, reviewed by Petr Jelínek, and rather heavily
editorialized on by me.
Commit 013ebc0a7b7ea9c1b1ab7a3d4dd75ea121ea8ba7 introduces microvacuum for
GiST, deletetion of tuple marked LP_DEAD uses IndexPageMultiDelete while
recovery code uses IndexPageTupleDelete in loop. This causes a difference
in offset numbers of tuples to delete. Patch introduces usage of
IndexPageMultiDelete in GiST except gistplacetopage() where only one tuple is
deleted at once. That also slightly improve performance, because
IndexPageMultiDelete is more effective.
Patch changes WAL format, so bump wal page magic.
Bug report from Jeff Janes
Diagnostic and patch by Anastasia Lubennikova and me
Remove use of PageSetTLI() from all page manipulation functions
and adjust README to indicate change in the way we make changes
to pages. Repurpose those bytes into the pd_checksum field and
explain how that works in comments about page header.
Refactoring ahead of actual feature patch which would make use
of the checksum field, arriving later.
Jeff Davis, with comments and doc changes by Simon Riggs
Direction suggested by Robert Haas; many others providing
review comments.
The reason this wasn't supported before was that GiST indexes need an
increasing sequence to detect concurrent page-splits. In a regular WAL-
logged GiST index, the LSN of the page-split record is used for that
purpose, and in a temporary index, we can get away with a backend-local
counter. Neither of those methods works for an unlogged relation.
To provide such an increasing sequence of numbers, create a "fake LSN"
counter that is saved and restored across shutdowns. On recovery, unlogged
relations are blown away, so the counter doesn't need to survive that
either.
Jeevan Chalke, based on discussions with Robert Haas, Tom Lane and me.
The patch that turned XLogRecPtr into a uint64 inadvertently changed the
on-disk format of GiST indexes, because the NSN field in the GiST page
opaque is an XLogRecPtr. That breaks pg_upgrade. Revert the format of that
field back to the two-field struct that XLogRecPtr was before. This is the
same we did to LSNs in the page header to avoid changing on-disk format.
Bump catversion, as this invalidates any existing GiST indexes built on
9.3devel.
This gets rid of XLByteLT, XLByteLE, XLByteEQ and XLByteAdvance.
These were useful for brevity when XLogRecPtrs were split in
xlogid/xrecoff; but now that they are simple uint64's, they are just
clutter. The only downside to making this change would be ease of
backporting patches, but that has been negated by other substantive
changes to the involved code anyway. The clarity of simpler expressions
makes the change worthwhile.
Most of the changes are mechanical, but in a couple of places, the patch
author chose to invert the operator sense, making the code flow more
logical (and more in line with preceding comments).
Author: Andres Freund
Eyeballed by Dimitri Fontaine and Alvaro Herrera
This warning is new in gcc 4.6 and part of -Wall. This patch cleans
up most of the noise, but there are some still warnings that are
trickier to remove.
cleanup stage to finish incomplete inserts or splits anymore. There was two
reasons for the cleanup step:
1. When a new tuple was inserted to a leaf page, the downlink in the parent
needed to be updated to contain (ie. to be consistent with) the new key.
Updating the parent in turn might require recursively updating the parent of
the parent. We now handle that by updating the parent while traversing down
the tree, so that when we insert the leaf tuple, all the parents are already
consistent with the new key, and the tree is consistent at every step.
2. When a page is split, we need to insert the downlink for the new right
page(s), and update the downlink for the original page to not include keys
that moved to the right page(s). We now handle that by setting a new flag,
F_FOLLOW_RIGHT, on the non-rightmost pages in the split. When that flag is
set, scans always follow the rightlink, regardless of the NSN mechanism used
to detect concurrent page splits. That way the tree is consistent right after
split, even though the downlink is still missing. This is very similar to the
way B-tree splits are handled. When the downlink is inserted in the parent,
the flag is cleared. To keep the insertion algorithm simple, when an
insertion sees an incomplete split, indicated by the F_FOLLOW_RIGHT flag, it
finishes the split before doing anything else.
These changes allow removing the whole "invalid tuple" mechanism, but I
retained the scan code to still follow invalid tuples correctly. While we
don't create any such tuples anymore, we want to handle them gracefully in
case you pg_upgrade a GiST index that has them. If we encounter any on an
insert, though, we just throw an error saying that you need to REINDEX.
The issue that got me into doing this is that if you did a checkpoint while
an insert or split was in progress, and the checkpoint finishes quickly so
that there is no WAL record related to the insert between RedoRecPtr and the
checkpoint record, recovery from that checkpoint would not know to finish
the incomplete insert. IOW, we have the same issue we solved with the
rm_safe_restartpoint mechanism during normal operation too. It's highly
unlikely to happen in practice, and this fix is far too large to backpatch,
so we're just going to live with in previous versions, but this refactoring
fixes it going forward.
With this patch, you don't get the annoying
'index "FOO" needs VACUUM or REINDEX to finish crash recovery' notices
anymore if you crash at an unfortunate moment.
This commit replaces pg_class.relistemp with pg_class.relpersistence;
and also modifies the RangeVar node type to carry relpersistence rather
than istemp. It also removes removes rd_istemp from RelationData and
instead performs the correct computation based on relpersistence.
For clarity, we add three new macros: RelationNeedsWAL(),
RelationUsesLocalBuffers(), and RelationUsesTempNamespace(), so that we
can clarify the purpose of each check that previous depended on
rd_istemp.
This is intended as infrastructure for the upcoming unlogged tables
patch, as well as for future possible work on global temporary tables.
temporary indexes are not WAL-logged. We used a constant LSN for temporary
indexes, on the assumption that we don't need to worry about concurrent page
splits in temporary indexes because they're only visible to the current
session. But that assumption is wrong, it's possible to insert rows and
split pages in the same session, while a scan is in progress. For example,
by opening a cursor and fetching some rows, and INSERTing new rows before
fetching some more.
Fix by generating fake increasing LSNs, used in place of real LSNs in
temporary GiST indexes.
VACUUM FULL INPLACE), along with a boatload of subsidiary code and complexity.
Per discussion, the use case for this method of vacuuming is no longer large
enough to justify maintaining it; not to mention that we don't wish to invest
the work that would be needed to make it play nicely with Hot Standby.
Aside from the code directly related to old-style VACUUM FULL, this commit
removes support for certain WAL record types that could only be generated
within VACUUM FULL, redirect-pointer removal in heap_page_prune, and
nontransactional generation of cache invalidation sinval messages (the last
being the sticking point for Hot Standby).
We still have to retain all code that copes with finding HEAP_MOVED_OFF and
HEAP_MOVED_IN flag bits on existing tuples. This can't be removed as long
as we want to support in-place update from pre-9.0 databases.
behavior in cases where we don't know the heap tuple count accurately; in
particular partial vacuum, but this also makes the API a bit more useful
for ANALYZE. This patch adds "estimated_count" flags to both structs so
that an approximate count can be flagged as such, and adjusts the logic
so that approximate counts are not used for updating pg_class.reltuples.
This fixes my previous complaint that VACUUM was putting ridiculous values
into pg_class.reltuples for indexes. The actual impact of that bug is
limited, because the planner only pays attention to reltuples for an index
if the index is partial; which probably explains why beta testers hadn't
noticed a degradation in plan quality from it. But it needs to be fixed.
The whole thing is a bit messy and should be redesigned in future, because
reltuples now has the potential to drift quite far away from reality when
a long period elapses with no non-partial vacuums. But this is as good as
it's going to get for 8.4.
multiple index entries in a holding area before adding them to the main index
structure. This helps because bulk insert is (usually) significantly faster
than retail insert for GIN.
This patch also removes GIN support for amgettuple-style index scans. The
API defined for amgettuple is difficult to support with fastupdate, and
the previously committed partial-match feature didn't really work with
it either. We might eventually figure a way to put back amgettuple
support, but it won't happen for 8.4.
catversion bumped because of change in GIN's pg_am entry, and because
the format of GIN indexes changed on-disk (there's a metapage now,
and possibly a pending list).
Teodor Sigaev
truncations in FSM code, call FreeSpaceMapTruncateRel from smgr_redo. To
make that cleaner from modularity point of view, move the WAL-logging one
level up to RelationTruncate, and move RelationTruncate and all the
related WAL-logging to new src/backend/catalog/storage.c file. Introduce
new RelationCreateStorage and RelationDropStorage functions that are used
instead of calling smgrcreate/smgrscheduleunlink directly. Move the
pending rel deletion stuff from smgrcreate/smgrscheduleunlink to the new
functions. This leaves smgr.c as a thin wrapper around md.c; all the
transactional stuff is now in storage.c.
This will make it easier to add new forks with similar truncation logic,
like the visibility map.
functions into one ReadBufferExtended function, that takes the strategy
and mode as argument. There's three modes, RBM_NORMAL which is the default
used by plain ReadBuffer(), RBM_ZERO, which replaces ZeroOrReadBuffer, and
a new mode RBM_ZERO_ON_ERROR, which allows callers to read corrupt pages
without throwing an error. The FSM needs the new mode to recover from
corrupt pages, which could happend if we crash after extending an FSM file,
and the new page is "torn".
Add fork number to some error messages in bufmgr.c, that still lacked it.
free space information is stored in a dedicated FSM relation fork, with each
relation (except for hash indexes; they don't use FSM).
This eliminates the max_fsm_relations and max_fsm_pages GUC options; remove any
trace of them from the backend, initdb, and documentation.
Rewrite contrib/pg_freespacemap to match the new FSM implementation. Also
introduce a new variant of the get_raw_page(regclass, int4, int4) function in
contrib/pageinspect that let's you to return pages from any relation fork, and
a new fsm_page_contents() function to inspect the new FSM pages.
forks. XLogOpenRelation() and the associated light-weight relation cache in
xlogutils.c is gone, and XLogReadBuffer() now takes a RelFileNode as argument,
instead of Relation.
For functions that still need a Relation struct during WAL replay, there's a
new function called CreateFakeRelcacheEntry() that returns a fake entry like
XLogOpenRelation() used to.
unnecessary #include lines in it. Also, move some tuple routine prototypes and
macros to htup.h, which allows removal of heapam.h inclusion from some .c
files.
For this to work, a new header file access/sysattr.h needed to be created,
initially containing attribute numbers of system columns, for pg_dump usage.
While at it, make contrib ltree, intarray and hstore header files more
consistent with our header style.
columns, and the new version can be stored on the same heap page, we no longer
generate extra index entries for the new version. Instead, index searches
follow the HOT-chain links to ensure they find the correct tuple version.
In addition, this patch introduces the ability to "prune" dead tuples on a
per-page basis, without having to do a complete VACUUM pass to recover space.
VACUUM is still needed to clean up dead index entries, however.
Pavan Deolasee, with help from a bunch of other people.
than two independent bits (one of which was never used in heap pages anyway,
or at least hadn't been in a very long time). This gives us flexibility to
add the HOT notions of redirected and dead item pointers without requiring
anything so klugy as magic values of lp_off and lp_len. The state values
are chosen so that for the states currently in use (pre-HOT) there is no
change in the physical representation.