Nov 2002: when constant-expression simplification removes all the
aggregate function calls from a query, that doesn't mean we can act as
though there never were any aggregates. Per bug report from Gabor Szucs.
Make btree index creation and initial validation of foreign-key constraints
use maintenance_work_mem rather than work_mem as their memory limit.
Add some code to guc.c to allow these variables to be referenced by their
old names in SHOW and SET commands, for backwards compatibility.
check instead of hardwiring assumptions that only certain plan node types
can appear at the places where we are testing. This was always a pretty
fragile assumption, and it turns out to be broken in 7.4 for certain cases
involving IN-subselect tests that need type coercion.
Also, modify code that builds finished Plan tree so that node types that
don't do projection always copy their input node's targetlist, rather than
having the tlist passed in from the caller. The old method makes it too
easy to write broken code that thinks it can modify the tlist when it
cannot.
about whether it is applied before or after eval_const_expressions().
I believe there were some corner cases where the system would fail to
recognize that a partial index is applicable because of the previous
inconsistency. Store normal rather than 'implicit AND' representations
of constraints and index predicates in the catalogs.
initdb forced due to representation change of constraints/predicates.
datatype by array_eq and array_cmp; use this to solve problems with memory
leaks in array indexing support. The parser's equality_oper and ordering_oper
routines also use the cache. Change the operator search algorithms to look
for appropriate btree or hash index opclasses, instead of assuming operators
named '<' or '=' have the right semantics. (ORDER BY ASC/DESC now also look
at opclasses, instead of assuming '<' and '>' are the right things.) Add
several more index opclasses so that there is no regression in functionality
for base datatypes. initdb forced due to catalog additions.
instead of the former kluge whereby gram.y emitted already-transformed
expressions. This is needed so that Params appearing in these clauses
actually work correctly. I suppose some might claim that the side effect
of 'SELECT ... LIMIT 2+2' working is a new feature, but I say this is
a bug fix.
silently resolving them to type TEXT. This is comparable to what we
do when faced with UNKNOWN in CASE, UNION, and other contexts. It gets
rid of this and related annoyances:
select distinct f1, '' from int4_tbl;
ERROR: Unable to identify an ordering operator '<' for type unknown
This was discussed many moons ago, but no one got round to fixing it.
extensions to support our historical behavior. An aggregate belongs
to the closest query level of any of the variables in its argument,
or the current query level if there are no variables (e.g., COUNT(*)).
The implementation involves adding an agglevelsup field to Aggref,
and treating outer aggregates like outer variables at planning time.
the column by table OID and column number, if it's a simple column
reference. Along the way, get rid of reskey/reskeyop fields in Resdoms.
Turns out that representation was not convenient for either the planner
or the executor; we can make the planner deliver exactly what the
executor wants with no more effort.
initdb forced due to change in stored rule representation.
This bug has been latent since 7.0 or maybe even further back, but it
was only exposed when parse_clause.c stopped suppressing duplicate
items (see its rev 1.96 of 18-Aug-02).
utility statement (DeclareCursorStmt) with a SELECT query dangling from
it, rather than a SELECT query with a few unusual fields in it. Add
code to determine whether a planned query can safely be run backwards.
If DECLARE CURSOR specifies SCROLL, ensure that the plan can be run
backwards by adding a Materialize plan node if it can't. Without SCROLL,
you get an error if you try to fetch backwards from a cursor that can't
handle it. (There is still some discussion about what the exact
behavior should be, but this is necessary infrastructure in any case.)
Along the way, make EXPLAIN DECLARE CURSOR work.
DELETE of an inheritance tree references another inherited relation.
This bug has been latent since 7.1; I'm still not quite sure why 7.1 and
7.2 don't manifest it (at least, they don't crash on a simple test case).
the outer query. (The implementation is a bit klugy, but it would take
nontrivial restructuring to make it nicer, which this is probably not
worth.) This avoids unnecessary sort steps in examples like
SELECT foo,count(*) FROM (SELECT ... ORDER BY foo,bar) sub GROUP BY foo
which means there is now a reasonable technique for controlling the
order of inputs to custom aggregates, even in the grouping case.
locParam lists can be converted to bitmapsets to speed updating. Also,
replace 'locParam' with 'allParam', which contains all the paramIDs
relevant to the node (i.e., the union of extParam and locParam); this
saves a step during SetChangedParamList() without costing anything
elsewhere.
nodes where it's not really necessary. In many cases where the scan node
is not the topmost plan node (eg, joins, aggregation), it's possible to
just return the table tuple directly instead of generating an intermediate
projection tuple. In preliminary testing, this reduced the CPU time
needed for 'SELECT COUNT(*) FROM foo' by about 10%.
necessarily following the JOIN syntax to develop the query plan. The old
behavior is still available by setting GUC variable JOIN_COLLAPSE_LIMIT
to 1. Also create a GUC variable FROM_COLLAPSE_LIMIT to control the
similar decision about when to collapse sub-SELECT lists into their parent
lists. (This behavior existed already, but the limit was always
GEQO_THRESHOLD/2; now it's separately adjustable.)
There are two implementation techniques: the executor understands a new
JOIN_IN jointype, which emits at most one matching row per left-hand row,
or the result of the IN's sub-select can be fed through a DISTINCT filter
and then joined as an ordinary relation.
Along the way, some minor code cleanup in the optimizer; notably, break
out most of the jointree-rearrangement preprocessing in planner.c and
put it in a new file prep/prepjointree.c.
that used to do it in planner. That was an ancient kluge that was
never satisfactory; errors should be detected at parse time when possible.
But at the time we didn't have the support mechanism (expression_tree_walker
et al) to make it convenient to do in the parser.
containing a volatile function), rather than only on 'Var = Var' clauses
as before. This makes it practical to do flatten_join_alias_vars at the
start of planning, which in turn eliminates a bunch of klugery inside the
planner to deal with alias vars. As a free side effect, we now detect
implied equality of non-Var expressions; for example in
SELECT ... WHERE a.x = b.y and b.y = 42
we will deduce a.x = 42 and use that as a restriction qual on a. Also,
we can remove the restriction introduced 12/5/02 to prevent pullup of
subqueries whose targetlists contain sublinks.
Still TODO: make statistical estimation routines in selfuncs.c and costsize.c
smarter about expressions that are more complex than plain Vars. The need
for this is considerably greater now that we have to be able to estimate
the suitability of merge and hash join techniques on such expressions.
a qualification clause (and hence can get away with being sloppy about
distinguishing FALSE from UNKNOWN). We need to know this in subselect.c;
marking the subplans in setrefs.c is too late.
HAVING quals. Normally this is an insignificant effect --- but it
will not be insignificant when these clauses contain sub-selects.
The added costs cannot affect the planning of the query containing
them, but they might have an impact when the query is a sub-query
of a larger one.
in the planned representation of a subplan at all any more, only SubPlan.
This means subselect.c doesn't scribble on its input anymore, which seems
like a good thing; and there are no longer three different possible
interpretations of a SubLink. Simplify node naming and improve comments
in primnodes.h. No change to stored rules, though.
so that all executable expression nodes inherit from a common supertype
Expr. This is somewhat of an exercise in code purity rather than any
real functional advance, but getting rid of the extra Oper or Func node
formerly used in each operator or function call should provide at least
a little space and speed improvement.
initdb forced by changes in stored-rules representation.
problems that occur if sublink is referenced via a join alias variable.
Perhaps this can be improved later, but a simple and safe fix is needed
for 7.3.1.
operations: make sure we use operators that are compatible, as determined
by a mergejoin link in pg_operator. Also, add code to planner to ensure
we don't try to use hashed grouping when the grouping operators aren't
marked hashable.
sublink results and COPY's domain constraint checking. A Const that
isn't really constant is just a Bad Idea(tm). Remove hacks in
parse_coerce and other places that were needed because of the former
klugery.
parameter to allow it to be forced off for comparison purposes.
Add ORDER BY clauses to a bunch of regression test queries that will
otherwise produce randomly-ordered output in the new regime.
of groups produced by GROUP BY. This improves the accuracy of planning
estimates for grouped subselects, and is needed to check whether a
hashed aggregation plan risks memory overflow.
node now does its own grouping of the input rows, and has no need for a
preceding GROUP node in the plan pipeline. This allows elimination of
the misnamed tuplePerGroup option for GROUP, and actually saves more code
in nodeGroup.c than it costs in nodeAgg.c, as well as being presumably
faster. Restructure the API of query_planner so that we do not commit to
using a sorted or unsorted plan in query_planner; instead grouping_planner
makes the decision. (Right now it isn't any smarter than query_planner
was, but that will change as soon as it has the option to select a hash-
based aggregation step.) Despite all the hackery, no initdb needed since
only in-memory node types changed.
should be pretty safe in practice, but it's probably better to be safe
than sorry.
I was actually looking for cases where NAMEDATALEN is assumed to be
32, but only found one. That's fixed too, as well as a few bits of
code cleanup.
Neil Conway
process function RTE expressions, which they were previously missing.
This allows outer-Var references and subselects to work correctly in
the arguments of a function RTE. Install check to prevent function RTEs
from cross-referencing Vars of sibling FROM-items, which doesn't make
any sense (if you want to join, write a JOIN or WHERE clause).
rather than a Query node; this allows set_plan_references to recurse
into subplans correctly. Fixes core dump on full outer joins in
subplans. Also, invoke preprocess_expression on function RTEs'
function expressions. This seems to fix the planner's problems with
outer-level Vars in function RTEs.