If we have Limit->Result->Sort, the Result might be projecting a tlist
that contains a set-returning function. If so, it's possible for the
SRF to sometimes return zero rows, which means we could need to fetch
more than N rows from the Sort in order to satisfy LIMIT N.
So top-N sorting cannot be used in this scenario.
Fix things so that top-N sorting can be used in child Sort nodes of a
MergeAppend node, when there is a LIMIT and no intervening joins or
grouping. Actually doing this on the executor side isn't too bad,
but it's a bit messier to get the planner to cost it properly.
Per gripe from Robert Haas.
In passing, fix an oversight in the original top-N-sorting patch:
query_planner should not assume that a LIMIT can be used to make an
explicit sort cheaper when there will be grouping or aggregation in
between. Possibly this should be back-patched, but I'm not sure the
mistake is serious enough to be a real problem in practice.
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels. This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.
ExecReScan's second parameter is now unused, so it's removed.
recompute the limit/offset immediately, so that the updated values are
available when the child's ReScan function is invoked. Add a regression
test for this, too. Bug is new in HEAD (due to the bounded-sorting patch)
so no need for back-patch.
I did not do anything about merging this signaling with chgParam processing,
but if we were to do that we'd still need to compute the updated values
at this point rather than during the first ProcNode call.
Per observation and test case from Greg Stark, though I didn't use his patch.
need be returned. We keep a heap of the current best N tuples and sift-up
new tuples into it as we scan the input. For M input tuples this means
only about M*log(N) comparisons instead of M*log(M), not to mention a lot
less workspace when N is small --- avoiding spill-to-disk for large M
is actually the most attractive thing about it. Patch includes planner
and executor support for invoking this facility in ORDER BY ... LIMIT
queries. Greg Stark, with some editorialization by moi.
by the change to make limit values int8 instead of int4. (Specifically, you
can do DatumGetInt32 safely on a null value, but not DatumGetInt64.) Per
bug #2803 from Greg Johnson.
eliminate unnecessary code, force initdb because stored rules change
(limit nodes are now supposed to be int8 not int4 expressions).
Update comments and error messages, which still all said 'integer'.
bits indicating which optional capabilities can actually be exercised
at runtime. This will allow Sort and Material nodes, and perhaps later
other nodes, to avoid unnecessary overhead in common cases.
This commit just adds the infrastructure and arranges to pass the correct
flag values down to plan nodes; none of the actual optimizations are here
yet. I'm committing this separately in case anyone wants to measure the
added overhead. (It should be negligible.)
Simon Riggs and Tom Lane
generate their output tuple descriptors from their target lists (ie, using
ExecAssignResultTypeFromTL()). We long ago fixed things so that all node
types have minimally valid tlists, so there's no longer any good reason to
have two different ways of doing it. This change is needed to fix bug
reported by Hayden James: the fix of 2005-11-03 to emit the correct column
names after optimizing away a SubqueryScan node didn't work if the new
top-level plan node used ExecAssignResultTypeFromOuterPlan to generate its
tupdesc, since the next plan node down won't have the correct column labels.
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
a per-query memory context created by CreateExecutorState --- and destroyed
by FreeExecutorState. This provides a final solution to the longstanding
problem of memory leaked by various ExecEndNode calls.
execution state trees, and ExecEvalExpr takes an expression state tree
not an expression plan tree. The plan tree is now read-only as far as
the executor is concerned. Next step is to begin actually exploiting
this property.
to plan nodes, not vice-versa. All executor state nodes now inherit from
struct PlanState. Copying of plan trees has been simplified by not
storing a list of SubPlans in Plan nodes (eliminating duplicate links).
The executor still needs such a list, but it can build it during
ExecutorStart since it has to scan the plan tree anyway.
No initdb forced since no stored-on-disk structures changed, but you
will need a full recompile because of node-numbering changes.
one more row from the subplan than the COUNT would appear to require.
This costs a little more logic but a number of people have complained
about the old implementation.
ExecutorRun. This allows LIMIT to work in a view. Also, LIMIT in a
cursor declaration will behave in a reasonable fashion, whereas before
it was overridden by the FETCH count.