When the very cheapest path is not parallel-safe, we want to instead use
the cheapest unparameterized path that is. The old code searched
innerrel->cheapest_parameterized_paths, but that isn't right, because
the path we want may not be in that list. Search innerrel->pathlist
instead.
Spotted by Dilip Kumar.
Discussion: http://postgr.es/m/CAFiTN-szCEcZrQm0i_w4xqSaRUTOUFstNu32Zn4rxxDcoa8gnA@mail.gmail.com
Commit 5262f7a4fc added similar support
for parallel index scans; this extends that work to index-only scans.
As with parallel index scans, this requires support from the index AM,
so currently parallel index-only scans will only be possible for btree
indexes.
Rafia Sabih, reviewed and tested by Rahila Syed, Tushar Ahuja,
and Amit Kapila
Discussion: http://postgr.es/m/CAOGQiiPEAs4C=TBp0XShxBvnWXuzGL2u++Hm1=qnCpd6_Mf8Fw@mail.gmail.com
In combination with 569174f1be, which
taught the btree AM how to perform parallel index scans, this allows
parallel index scan plans on btree indexes. This infrastructure
should be general enough to support parallel index scans for other
index AMs as well, if someone updates them to support parallel
scans.
Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar
Ahuja, and Haribabu Kommi, and me.
When min_parallel_relation_size was added, the only supported type
of parallel scan was a parallel sequential scan, but there are
pending patches for parallel index scan, parallel index-only scan,
and parallel bitmap heap scan. Those patches introduce two new
types of complications: first, what's relevant is not really the
total size of the relation but the portion of it that we will scan;
and second, index pages and heap pages shouldn't necessarily be
treated in exactly the same way. Typically, the number of index
pages will be quite small, but that doesn't necessarily mean that
a parallel index scan can't pay off.
Therefore, we introduce min_parallel_table_scan_size, which works
out a degree of parallelism for scans based on the number of table
pages that will be scanned (and which is therefore equivalent to
min_parallel_relation_size for parallel sequential scans) and also
min_parallel_index_scan_size which can be used to work out a degree
of parallelism based on the number of index pages that will be
scanned.
Amit Kapila and Robert Haas
Discussion: http://postgr.es/m/CAA4eK1KowGSYYVpd2qPpaPPA5R90r++QwDFbrRECTE9H_HvpOg@mail.gmail.com
Discussion: http://postgr.es/m/CAA4eK1+TnM4pXQbvn7OXqam+k_HZqb0ROZUMxOiL6DWJYCyYow@mail.gmail.com
Currently, we only need this logic in order to cost a Bitmap Heap
Scan. But a pending patch for Parallel Bitmap Heap Scan also uses
it to help figure out how many workers to use for the scan, which
has to be determined prior to costing. So, move the logic to
a separate function to make that easier.
Dilip Kumar. The patch series of which this is a part has been
reviewed by Andres Freund, Amit Khendekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, and me; it is not clear from the email
discussion which of those people have looked specifically at this
part.
Discussion: http://postgr.es/m/CAFiTN-v3QYNJEZnnmKCeATuLbN-h9tMVfeEF0+BrouYDqjXgwg@mail.gmail.com
I'd somehow talked myself into believing that set_append_rel_size
doesn't need to worry about getting back an AND clause when it applies
eval_const_expressions to the result of adjust_appendrel_attrs (that is,
transposing the appendrel parent's restriction clauses for one child).
But that is nonsense, and Andreas Seltenreich's fuzz tester soon
turned up a counterexample. Put back the make_ands_implicit step
that was there before, and add a regression test covering the case.
Report: https://postgr.es/m/878tq6vja6.fsf@ansel.ydns.eu
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
In an RLS query, we must ensure that security filter quals are evaluated
before ordinary query quals, in case the latter contain "leaky" functions
that could expose the contents of sensitive rows. The original
implementation of RLS planning ensured this by pushing the scan of a
secured table into a sub-query that it marked as a security-barrier view.
Unfortunately this results in very inefficient plans in many cases, because
the sub-query cannot be flattened and gets planned independently of the
rest of the query.
To fix, drop the use of sub-queries to enforce RLS qual order, and instead
mark each qual (RestrictInfo) with a security_level field establishing its
priority for evaluation. Quals must be evaluated in security_level order,
except that "leakproof" quals can be allowed to go ahead of quals of lower
security_level, if it's helpful to do so. This has to be enforced within
the ordering of any one list of quals to be evaluated at a table scan node,
and we also have to ensure that quals are not chosen for early evaluation
(i.e., use as an index qual or TID scan qual) if they're not allowed to go
ahead of other quals at the scan node.
This is sufficient to fix the problem for RLS quals, since we only support
RLS policies on simple tables and thus RLS quals will always exist at the
table scan level only. Eventually these qual ordering rules should be
enforced for join quals as well, which would permit improving planning for
explicit security-barrier views; but that's a task for another patch.
Note that FDWs would need to be aware of these rules --- and not, for
example, send an insecure qual for remote execution --- but since we do
not yet allow RLS policies on foreign tables, the case doesn't arise.
This will need to be addressed before we can allow such policies.
Patch by me, reviewed by Stephen Frost and Dean Rasheed.
Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
Normally, if we have a WHERE clause like "indexcol = constant",
the planner will figure out that that index column can be ignored
when determining whether the index has a desired sort ordering.
But this failed to work for boolean index columns, because a
condition like "boolcol = true" is canonicalized to just "boolcol"
which does not give rise to an EquivalenceClass. Add a check to
allow the same type of deduction to be made in this case too.
Per a complaint from Dima Pavlov. Arguably this is a bug, but given the
limited impact and the small number of complaints so far, I won't risk
destabilizing plans in stable branches by back-patching.
Patch by me, reviewed by Michael Paquier
Discussion: https://postgr.es/m/1788.1481605684@sss.pgh.pa.us
For a partial path, the cardinality estimate needs to reflect the
number of rows we think each worker will see, rather than the total
number of rows; otherwise, costing will go wrong. The previous coding
got this completely wrong for parallel joins.
Unfortunately, this change may destabilize plans for users of 9.6 who
have enabled parallel query, but since 9.6 is still fairly new I'm
hoping expectations won't be too settled yet. Also, this is really a
brown-paper-bag bug, so leaving it unfixed for the entire lifetime of
9.6 seems unwise.
Related reports (whose import I initially failed to recognize) by
Tomas Vondra and Tom Lane.
Discussion: http://postgr.es/m/CA+TgmoaDxZ5z5Kw_oCQoymNxNoVaTCXzPaODcOuao=CzK8dMZw@mail.gmail.com
This shouldn't change the set of paths that get generated in any
way, but it is preparatory work for further changes to allow a
partial path to be merge-joined witih a non-partial path to produce
a partial join path.
Dilip Kumar, with cosmetic adjustments by me.
This case wasn't thought through sufficiently in commit 100340e2d.
It's true that the FK proves that every outer row has a match in the
inner table, but we forgot that some of the inner rows might be filtered
away by WHERE conditions located within the semijoin's RHS.
If the RHS is just one table, we can reasonably take the semijoin
selectivity as equal to the fraction of the referenced table's rows
that are expected to survive its restriction clauses.
If the RHS is a join, it's not clear how much of the referenced table
might get through the join, so fall back to the same rule we were
already using for other outer-join cases: use the minimum of the
regular per-clause selectivity estimates. This gives the same result
as if we hadn't considered the FK at all when there's a single FK
column, but it should still help for multi-column FKs, which is the
case that 100340e2d is really meant to help with.
Back-patch to 9.6 where the previous commit came in.
Discussion: https://postgr.es/m/16149.1481835103@sss.pgh.pa.us
consider_parallel_nestloop passed the wrong jointype down to its
subroutines for JOIN_UNIQUE_INNER cases (it should pass JOIN_INNER), and it
thought that it could pass paths other than innerrel->cheapest_total_path
to create_unique_path, which create_unique_path is not on board with.
These bugs would lead to assertion failures or other errors, suggesting
that this code path hasn't been tested much.
hash_inner_and_outer's code for parallel join effectively treated both
JOIN_UNIQUE_OUTER and JOIN_UNIQUE_INNER the same as JOIN_INNER (for
different reasons :-(), leading to incorrect plans that treated a semijoin
as if it were a plain join.
Michael Day submitted a test case demonstrating that hash_inner_and_outer
failed for JOIN_UNIQUE_OUTER, and I found the other cases through code
review.
Report: https://postgr.es/m/D0E8A029-D1AC-42E8-979A-5DE4A77E4413@rcmail.com
Commit 7a2fe9bd0 improved merge append so that replacement of a tuple
takes log(N) operations, not twice log(N). Since cost_merge_append knew
about that explicitly, we should adjust it. This probably makes little
difference in practice, but the obsolete comment is confusing.
Ideally this would have been put in in 9.3 with the underlying behavior
change; but I'm not going to back-patch it, since there's some small chance
of changing a plan choice that somebody's optimized for.
Thomas Munro
Discussion: <CAEepm=0WQBSvuYcMOUj4Ga4NXpu2J=ejZcE=e=eiTjTX-6_gDw@mail.gmail.com>
Pushing an upper-level restriction clause into an unflattened
subquery-in-FROM is okay when the subquery contains no SRFs in its
targetlist, or when it does but the SRFs are unreferenced by the clause
*and the clause is not volatile*. Otherwise, we're changing the number
of times the clause is evaluated, which is bad for volatile quals, and
possibly changing the result, since a volatile qual might succeed for some
SRF output rows and not others despite not referencing any of the changing
columns. (Indeed, if the clause is something like "random() > 0.5", the
user is probably expecting exactly that behavior.)
We had most of these restrictions down, but not the one about the upper
clause not being volatile. Fix that, and add a regression test to
illustrate the expected behavior.
Although this is definitely a bug, it doesn't seem like back-patch
material, since possibly some users don't realize that the broken
behavior is broken and are relying on what happens now. Also, while
the added test is quite cheap in the wake of commit a4c35ea1c, it would
be much more expensive (or else messier) in older branches.
Per report from Tom van Tilburg.
Discussion: <CAP3PPDiucxYCNev52=YPVkrQAPVF1C5PFWnrQPT7iMzO1fiKFQ@mail.gmail.com>
Teach the parser to reject misplaced set-returning functions during parse
analysis using p_expr_kind, in much the same way as we do for aggregates
and window functions (cf commit eaccfded9). While this isn't complete
(it misses nesting-based restrictions), it's much better than the previous
error reporting for such cases, and it allows elimination of assorted
ad-hoc expression_returns_set() error checks. We could add nesting checks
later if it seems important to catch all cases at parse time.
There is one case the parser will now throw error for although previous
versions allowed it, which is SRFs in the tlist of an UPDATE. That never
behaved sensibly (since it's ill-defined which generated row should be
used to perform the update) and it's hard to see why it should not be
treated as an error. It's a release-note-worthy change though.
Also, add a new Query field hasTargetSRFs reporting whether there are
any SRFs in the targetlist (including GROUP BY/ORDER BY expressions).
The parser can now set that basically for free during parse analysis,
and we can use it in a number of places to avoid expression_returns_set
searches. (There will be more such checks soon.) In some places, this
allows decontorting the logic since it's no longer expensive to check for
SRFs in the tlist --- so I made the checks parallel to the handling of
hasAggs/hasWindowFuncs wherever it seemed appropriate.
catversion bump because adding a Query field changes stored rules.
Andres Freund and Tom Lane
Discussion: <24639.1473782855@sss.pgh.pa.us>
Obvious brain fade in set_rel_consider_parallel(). Noticed it while
adjusting the adjacent RTE_FUNCTION case.
In 9.6, also make the code look more like what I just did in HEAD
by removing the unnecessary function_rte_parallel_ok subroutine
(it does nothing that expression_tree_walker wouldn't do).
We need to scan the whole parse tree for parallel-unsafe functions.
If there are none, we'll later need to determine whether particular
subtrees contain any parallel-restricted functions. The previous coding
retained no knowledge from the first scan, even though this is very
wasteful in the common case where the query contains only parallel-safe
functions. We can bypass all of the later scans by remembering that fact.
This provides a small but measurable speed improvement when the case
applies, and shouldn't cost anything when it doesn't.
Patch by me, reviewed by Robert Haas
Discussion: <3740.1471538387@sss.pgh.pa.us>
cost_rescan assumed that we don't need to rebuild the hash table when
rescanning a hash join. However, that's currently only true for
single-batch joins; for a multi-batch join we must charge full freight.
This probably has escaped notice because we'd be unlikely to put a hash
join on the inside of a nestloop anyway. Nonetheless, it's wrong.
Fix in HEAD, but don't backpatch for fear of destabilizing plans in
stable releases.
We must not push down a foreign join when the foreign tables involved
should be accessed under different user mappings. Previously we tried
to enforce that rule literally during planning, but that meant that the
resulting plans were dependent on the current contents of the
pg_user_mapping catalog, and we had to blow away all cached plans
containing any remote join when anything at all changed in pg_user_mapping.
This could have been improved somewhat, but the fact that a syscache inval
callback has very limited info about what changed made it hard to do better
within that design. Instead, let's change the planner to not consider user
mappings per se, but to allow a foreign join if both RTEs have the same
checkAsUser value. If they do, then they necessarily will use the same
user mapping at runtime, and we don't need to know specifically which one
that is. Post-plan-time changes in pg_user_mapping no longer require any
plan invalidation.
This rule does give up some optimization ability, to wit where two foreign
table references come from views with different owners or one's from a view
and one's directly in the query, but nonetheless the same user mapping
would have applied. We'll sacrifice the first case, but to not regress
more than we have to in the second case, allow a foreign join involving
both zero and nonzero checkAsUser values if the nonzero one is the same as
the prevailing effective userID. In that case, mark the plan as only
runnable by that userID.
The plancache code already had a notion of plans being userID-specific,
in order to support RLS. It was a little confused though, in particular
lacking clarity of thought as to whether it was the rewritten query or just
the finished plan that's dependent on the userID. Rearrange that code so
that it's clearer what depends on which, and so that the same logic applies
to both RLS-injected role dependency and foreign-join-injected role
dependency.
Note that this patch doesn't remove the other issue mentioned in the
original complaint, which is that while we'll reliably stop using a foreign
join if it's disallowed in a new context, we might fail to start using a
foreign join if it's now allowed, but we previously created a generic
cached plan that didn't use one. It was agreed that the chance of winning
that way was not high enough to justify the much larger number of plan
invalidations that would have to occur if we tried to cause it to happen.
In passing, clean up randomly-varying spelling of EXPLAIN commands in
postgres_fdw.sql, and fix a COSTS ON example that had been allowed to
leak into the committed tests.
This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the
previous attempt at ensuring we wouldn't push down foreign joins that
span permissions contexts.
Etsuro Fujita and Tom Lane
Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
There isn't really any reason not to; the original comments here were
partly confused about subplans versus subquery-in-FROM, and partly
dependent on restrictions that no longer apply now that subqueries return
Paths not Plans. Depending on what's inside the subquery, it might fail
to produce any parallel_safe Paths, but that's fine.
Tom Lane and Robert Haas
The previous coding assumed that the value derived by
set_rel_consider_parallel() for an appendrel parent would be accurate for
all the appendrel's children; but this is not so, for example because one
child might scan a temp table. Instead, apply set_rel_consider_parallel()
to each child rel as well as the parent, and then take the AND of the
results as controlling parallel safety for the appendrel as a whole.
(We might someday be able to deal more intelligently than this with cases
in which some of the childrels are parallel-safe and others not, but that's
for later.)
Robert Haas and Tom Lane
This was the intention all along, but an extraneous "return;" in
set_rel_consider_parallel() caused sampled rels to never be marked
consider_parallel.
Since we don't have any partial tablesample path/plan type yet, there's
no possibility of parallelizing the sample scan itself; but this fix
allows such a scan to appear below a parallel join, for example.
I'd been wondering why I was sometimes seeing fractional rowcount
estimates in parallel-query situations, and this seems to be the
reason. (You won't see the fractional parts in EXPLAIN, because it
prints rowcounts with %.0f, but they are apparent in the debugger.)
A fractional rowcount is not any saner for a partial path than any
other kind of path, and it's equally likely to break cost estimation
for higher paths, so apply clamp_row_est() like we do in other places.
VS2013 apparently has a problem with taking the address of a formal
parameter in some cases. We do that elsewhere without trouble, but
in this case the address is being passed to a subroutine that will
probably get inlined, so maybe the combination of those things is
what tickles the bug. Anyway, introducing an extra copy of the
parameter value is enough to work around it. Per trouble report
from Umair Shahid.
Report: <CAM184AcjqKYZSdQqBHDrnENXHhW=mXbUC46QYPJ=nAh0gUHCGA@mail.gmail.com>
This patch provides a new implementation of the logic added by commit
137805f89 and later removed by 77ba61080. It differs from the original
primarily in expending much less effort per joinrel in large queries,
which it accomplishes by doing most of the matching work once per query not
once per joinrel. Hopefully, it's also less buggy and better commented.
The never-documented enable_fkey_estimates GUC remains gone.
There remains work to be done to make the selectivity estimates account
for nulls in FK referencing columns; but that was true of the original
patch as well. We may be able to address this point later in beta.
In the meantime, any error should be in the direction of overestimating
rather than underestimating joinrel sizes, which seems like the direction
we want to err in.
Tomas Vondra and Tom Lane
Discussion: <31041.1465069446@sss.pgh.pa.us>
The main point of doing this is to allow the cutoff to be set very small,
even zero, to allow parallel-query behavior to be tested on relatively
small tables such as we typically use in the regression tests. But it
might be of use to users too. The number-of-workers scaling behavior in
create_plain_partial_paths() is pretty ad-hoc and subject to change, so
we won't expose anything about that, but the notion of not considering
parallel query at all for tables below size X seems reasonably stable.
Amit Kapila, per a suggestion from me
Discussion: <17170.1465830165@sss.pgh.pa.us>
Commit b12fd41c6 added a "reltarget_has_non_vars" field to RelOptInfo,
but failed to maintain it accurately. Since its only purpose was to skip
calls to has_parallel_hazard() in the simple case where a rel's targetlist
is all Vars, and that call is really pretty cheap in that case anyway, it
seems like this is just a case of premature optimization. Let's drop the
flag and do the calls unconditionally until it's proven that we need more
smarts here.
Such paths are unsafe. To make it cheaper to detect when this case
applies, track whether a relation's default PathTarget contains any
non-Vars. In most cases, the answer will be no, which enables us to
determine cheaply that the target list for a proposed path is
parallel-safe. However, subquery pull-up can create cases that
require us to inspect the target list more carefully.
Amit Kapila, reviewed by me.
Fix a couple of overlooked uses of "degree" terminology. Make the parallel
worker count selection logic in create_plain_partial_paths more robust (in
particular, it failed with max_parallel_workers_per_gather set to zero).
This terminology provoked widespread complaints. So, instead, rename
the GUC max_parallel_degree to max_parallel_workers_per_gather
(leaving room for a possible future GUC max_parallel_workers that acts
as a system-wide limit), and rename the parallel_degree reloption to
parallel_workers. Rename structure members to match.
These changes create a dump/restore hazard for users of PostgreSQL
9.6beta1 who have set the reloption (or applied the GUC using ALTER
USER or ALTER DATABASE).
This commit reverts 137805f89 as well as the associated commits 015e88942,
5306df283, and 68d704edb. We found multiple bugs in this feature, and
there was concern about possible planner slowdown (though to be fair,
exhibiting a very large slowdown proved difficult). The way forward
requires a considerable rewrite, which may or may not be possible to
accomplish in time for beta2. In my judgment reviewing the rewrite will
be easier to accomplish starting from a clean slate, so let's temporarily
revert what's there now. This also leaves us in a safe state if it turns
out to be necessary to postpone the rewrite to the next development cycle.
Discussion: <20160429102531.GA13701@huehner.biz>
Discussion is still underway as to whether to revert the entire patch
that added this function, but that discussion may not conclude before
beta1. So, in the meantime, let's do at least this much.
David Rowley
Now that Paths have their own rows field, print that rather than
the parent relation's rowcount.
Show the relid sets associated with Paths using table names rather
than numbers; since this code is able to print simple Var references
using table names, it seems a bit silly that print_relids can't.
Print the cheapest_parameterized_paths list for a RelOptInfo, and
include information about a parameterized path's required_outer rels.
Noted while trying to use this feature to debug Alexander Kirkouski's
recent bug report.
We mustn't run generate_gather_paths() during add_paths_to_joinrel(),
because that function can be invoked multiple times for the same target
joinrel. Not only is it wasteful to build GatherPaths repeatedly, but
a later add_partial_path() could delete the partial path that a previously
created GatherPath depends on. Instead establish the convention that we
do generate_gather_paths() for a rel only just before set_cheapest().
The code was accidentally not broken for baserels, because as of today there
never is more than one partial path for a baserel. But that assumption
obviously has a pretty short half-life, so move the generate_gather_paths()
calls for those cases as well.
Also add some generic comments explaining how and why this all works.
Per fuzz testing by Andreas Seltenreich.
Report: <871t5pgwdt.fsf@credativ.de>
Given a three-or-more-way equivalence class, such as X.Y = Y.Y = Z.Z,
it was possible for the planner to omit one of the quals needed to
enforce that all members of the equivalence class are actually equal.
This only happened in the case of a parameterized join node for two
of the relations, that is a plan tree like
Nested Loop
-> Scan X
-> Nested Loop
-> Scan Y
-> Scan Z
Filter: Z.Z = X.X
The eclass machinery normally expects to apply X.X = Y.Y when those
two relations are joined, but in this shape of plan tree they aren't
joined until the top node --- and, if the lower nested loop is marked
as parameterized by X, the top node will assume that the relevant eclass
condition(s) got pushed down into the lower node. On the other hand,
the scan of Z assumes that it's only responsible for constraining Z.Z
to match any one of the other eclass members. So one or another of
the required quals sometimes fell between the cracks, depending on
whether consideration of the eclass in get_joinrel_parampathinfo()
for the lower nested loop chanced to generate X.X = Y.Y or X.X = Z.Z
as the appropriate constraint there. If it generated the latter,
it'd erroneously suppose that the Z scan would take care of matters.
To fix, force X.X = Y.Y to be generated and applied at that join node
when this case occurs.
This is *extremely* hard to hit in practice, because various planner
behaviors conspire to mask the problem; starting with the fact that the
planner doesn't really like to generate a parameterized plan of the
above shape. (It might have been impossible to hit it before we
tweaked things to allow this plan shape for star-schema cases.) Many
thanks to Alexander Kirkouski for submitting a reproducible test case.
The bug can be demonstrated in all branches back to 9.2 where parameterized
paths were introduced, so back-patch that far.
Change max_parallel_degree default from 0 to 2. It is possible that
this is not a good idea, or that we should go with 1 worker rather
than 2, but we won't find out without trying it. Along the way,
reword the documentation for max_parallel_degree a little bit to
hopefully make it more clear.
Discussion: 20160420174631.3qjjhpwsvvx5bau5@alap3.anarazel.de
Now indexes (but only B-tree for now) can contain "extra" column(s) which
doesn't participate in index structure, they are just stored in leaf
tuples. It allows to use index only scan by using single index instead
of two or more indexes.
Author: Anastasia Lubennikova with minor editorializing by me
Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
The code that estimates what parallel degree should be uesd for the
scan of a relation is currently rather stupid, so add a parallel_degree
reloption that can be used to override the planner's rather limited
judgement.
Julien Rouhaud, reviewed by David Rowley, James Sewell, Amit Kapila,
and me. Some further hacking by me.