had a bad side-effect: it stopped finding plans that involved BitmapAnd
combinations of indexscans using both join and non-join conditions. Instead,
make choose_bitmap_and more aggressive about detecting redundancies between
BitmapOr subplans.
at least one join condition as an indexqual. Before bitmap indexscans, this
oversight didn't really cost much except for redundantly considering the
same join paths twice; but as of 8.1 it could result in silly bitmap scans
that would do the same BitmapOr twice and then BitmapAnd these together :-(
not likely ever to be implemented seeing it's been removed from SQL2003.
This allows getting rid of the 'filter' version of yylex() that we had in
parser.c, which should save at least a few microseconds in parsing.
with fixed merge order (fixed number of "tapes") was based on obsolete
assumptions, namely that tape drives are expensive. Since our "tapes"
are really just a couple of buffers, we can have a lot of them given
adequate workspace. This allows reduction of the number of merge passes
with consequent savings of I/O during large sorts.
Simon Riggs with some rework by Tom Lane
Var referencing the subselect output. While this case could possibly be made
to work, it seems not worth expending effort on. Per report from Magnus
Naeslund(f).
relations: fix the executor so that we can have an Append plan on the
inside of a nestloop and still pass down outer index keys to index scans
within the Append, then generate such plans as if they were regular
inner indexscans. This avoids the need to evaluate the outer relation
multiple times.
... in fact, it will be applied now in any query whatsoever. I'm still
a bit concerned about the cycles that might be expended in failed proof
attempts, but given that CE is turned off by default, it's the user's
choice whether to expend those cycles or not. (Possibly we should
change the simple bool constraint_exclusion parameter to something
more fine-grained?)
thereby sharing code with the inheritance case. This puts the UNION-ALL-view
approach to partitioned tables on par with inheritance, so far as constraint
exclusion is concerned: it works either way. (Still need to update the docs
to say so.) The definition of "simple UNION ALL" is a little simpler than
I would like --- basically the union arms can only be SELECT * FROM foo
--- but it's good enough for partitioned-table cases.
inheritance trees on-the-fly, which pretty well constrained us to considering
only one way of planning inheritance, expand inheritance sets during the
planner prep phase, and build a side data structure that can be consulted
later to find which RTEs are members of which inheritance sets. As proof of
concept, use the data structure to plan joins against inheritance sets more
efficiently: we can now use indexes on the set members in inner-indexscan
joins. (The generated plans could be improved further, but it'll take some
executor changes.) This data structure will also support handling UNION ALL
subqueries in the same way as inheritance sets, but that aspect of it isn't
finished yet.
requested sort order. It was assuming that build_index_pathkeys always
generates a pathkey per index column, which was not true if implied equality
deduction had determined that two index columns were effectively equated to
each other. Simplest fix seems to be to install an option that causes
build_index_pathkeys to support this behavior as well as the original one.
Per report from Brian Hirt.
and rely exclusively on the SQL type system to tell the difference between
the types. Prevent creation of invalid CIDR values via casting from INET
or set_masklen() --- both of these operations now silently zero any bits
to the right of the netmask. Remove duplicate CIDR comparison operators,
letting the type rely on the INET operators instead.
(previously we only did = and <> correctly). Also, allow row comparisons
with any operators that are in btree opclasses, not only those with these
specific names. This gets rid of a whole lot of indefensible assumptions
about the behavior of particular operators based on their names ... though
it's still true that IN and NOT IN expand to "= ANY". The patch adds a
RowCompareExpr expression node type, and makes some changes in the
representation of ANY/ALL/ROWCOMPARE SubLinks so that they can share code
with RowCompareExpr.
I have not yet done anything about making RowCompareExpr an indexable
operator, but will look at that soon.
initdb forced due to changes in stored rules.
Per my recent proposal. I ended up basing the implementation on the
existing mechanism for enforcing valid join orders of IN joins --- the
rules for valid outer-join orders are somewhat similar.
clauses even if it's an outer join. This is a corner case since such
clauses could only arise from weird OUTER JOIN ON conditions, but worth
fixing. Per example from Ron at cheapcomplexdevices.com.
#2075: consider an index redundant if any of its index conditions were already
used, rather than if all of them were. Also, make the selectivity comparison
a bit fuzzy, so that very small differences in estimated selectivities don't
skew the results.
"ctid IN (list)" will still work after we convert IN to ScalarArrayOpExpr.
Make some minor efficiency improvements while at it, such as ensuring that
multiple TIDs are fetched in physical heap order. And fix EXPLAIN so that
it shows what's really going on for a TID scan.
qualification when the underlying operator is indexable and useOr is true.
That is, indexkey op ANY (ARRAY[...]) is effectively translated into an
OR combination of one indexscan for each array element. This only works
for bitmap index scans, of course, since regular indexscans no longer
support OR'ing of scans. There are still some loose ends to clean up
before changing 'x IN (list)' to translate as a ScalarArrayOpExpr;
for instance predtest.c ought to be taught about it. But this gets the
basic functionality in place.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
sense and rename to "outerjoin_delayed" to more clearly reflect what it
means). I had decided that it was redundant in 8.1, but the folly of this
is exposed by a bug report from Sebastian Böck. The place where it's
needed is to prevent orindxpath.c from cherry-picking arms of an outer-join
OR clause to form a relation restriction that isn't actually legal to push
down to the relation scan level. There may be some legal cases that this
forbids optimizing, but we'd need much closer analysis to determine it.
for an outer join; symptom is bogus error "RIGHT JOIN is only supported with
merge-joinable join conditions". Problem was that select_mergejoin_clauses
did its tests in the wrong order. We need to force left join not right join
for a merge join when there are non-mergeable join clauses; but the test for
this only accounted for mergejoinability of the clause operator, and not
whether the left and right Vars were of the proper relations. Per report
from Jean-Pierre Pelletier.
A RestrictInfo representing an OR clause now contains two versions of
the contained expression, one with sub-RestrictInfos and one without.
clause_selectivity() should descend to the version with sub-RestrictInfos
so that it has a chance of caching its results for the OR's sub-clauses.
Failing to do so resulted in redundant planner effort.
"optimization". When we find a potentially useful joinclause, we
have to add all its other required_relids to the result, not only the
other clause_relids. They are different in the case of a joinclause
whose applicability has to be postponed due to outer join. We have
to include the extra rels because otherwise, after best_inner_indexscan
masks the join rels with index_outer_relids, it will always fail to
find the joinclause as applicable. Per report from Husam Tomeh.
so that the latter estimates the number of groups that grouping will
produce. This is needed because it is primarily query_planner that
makes the decision between fast-start and fast-finish plans, and in the
original coding it was unable to make more than a crude rule-of-thumb
choice when the query involved grouping. This revision helps us make
saner choices for queries like SELECT ... GROUP BY ... LIMIT, as in a
recent example from Mark Kirkwood. Also move the responsibility for
canonicalizing sort_pathkeys and group_pathkeys into query_planner;
this information has to be available anyway to support the first change,
and doing it this way lets us get rid of compare_noncanonical_pathkeys
entirely.
planning logic for bitmap indexscans. Partial indexes create corner
cases in which a scan might be done with no explicit index qual conditions,
and the code wasn't handling those cases nicely. Also be a little
tenser about eliminating redundant clauses in the generated plan.
Per report from Dmitry Karasik.
propagated inside an outer join. In particular, given
LEFT JOIN ON (A = B) WHERE A = constant, we cannot conclude that
B = constant at the top level (B might be null instead), but we
can nonetheless put a restriction B = constant into the quals for
B's relation, since no inner-side rows not meeting that condition
can contribute to the final result. Similarly, given
FULL JOIN USING (J) WHERE J = constant, we can't directly conclude
that either input J variable = constant, but it's OK to push such
quals into each input rel. Per recent gripe from Kim Bisgaard.
Along the way, remove 'valid_everywhere' flag from RestrictInfo,
as on closer analysis it was not being used for anything, and was
defined backwards anyway.
constraint while determining whether the index sort order matches the
query's ORDER BY. This for example allows an index on (x,y) to match
... WHERE x = 42 ORDER BY y;
It only works for btree indexes, but since those are the only ones we
currently have that are ordered at all, that's good enough for now.
Per popular demand.
nonconsecutive columns of a multicolumn index, as per discussion around
mid-May (pghackers thread "Best way to scan on-disk bitmaps"). This
turns out to require only minimal changes in btree, and so far as I can
see none at all in GiST. btcostestimate did need some work, but its
original assumption that index selectivity == heap selectivity was
quite bogus even before this.
to a subquery if the outer query is simple enough that the LIMIT can
be reflected directly to the subquery. This didn't use to be very
interesting, because a subquery that couldn't have been flattened into
the upper query was usually not going to be very responsive to
tuple_fraction anyway. But with new code that allows UNION ALL subqueries
to pay attention to tuple_fraction, this is useful to do. In particular
this lets the optimization occur when the UNION ALL is directly inside
a view.
of a relation in a flat 'joininfo' list. The former arrangement grouped
the join clauses according to the set of unjoined relids used in each;
however, profiling on test cases involving lots of joins proves that
that data structure is a net loss. It takes more time to group the
join clauses together than is saved by avoiding duplicate tests later.
It doesn't help any that there are usually not more than one or two
clauses per group ...
other_rel_list with a single array indexed by rangetable index.
This reduces find_base_rel from O(N) to O(1) without any real penalty.
While find_base_rel isn't one of the major bottlenecks in any profile
I've seen so far, it was starting to creep up on the radar screen
for complex queries --- so might as well fix it.
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
where there was also a WHERE-clause restriction that applied to the
join. The check on restrictlist == NIL is really unnecessary anyway,
because select_mergejoin_clauses already checked for and complained
about any unmergejoinable join clauses. So just take it out.
which is neither needed by nor related to that header. Remove the bogus
inclusion and instead include the header in those C files that actually
need it. Also fix unnecessary inclusions and bad inclusion order in
tsearch2 files.
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.