When a whole-row Var is reading the result of a subquery, we need it to
ignore any "resjunk" columns that the subquery might have evaluated for
GROUP BY or ORDER BY purposes. We've hacked this area before, in commit
68e40998d058c1f6662800a648ff1e1ce5d99cba, but that fix only covered
whole-row Vars of named composite types, not those of RECORD type; and it
was mighty klugy anyway, since it just assumed without checking that any
extra columns in the result must be resjunk. A proper fix requires getting
hold of the subquery's targetlist so we can actually see which columns are
resjunk (whereupon we can use a JunkFilter to get rid of them). So bite
the bullet and add some infrastructure to make that possible.
Per report from Andrew Dunstan and additional testing by Merlin Moncure.
Back-patch to all supported branches. In 8.3, also back-patch commit
292176a118da6979e5d368a4baf27f26896c99a5, which for some reason I had
not done at the time, but it's a prerequisite for this change.
Making this operation look like a utility statement seems generally a good
idea, and particularly so in light of the desire to provide command
triggers for utility statements. The original choice of representing it as
SELECT with an IntoClause appendage had metastasized into rather a lot of
places, unfortunately, so that this patch is a great deal more complicated
than one might at first expect.
In particular, keeping EXPLAIN working for SELECT INTO and CREATE TABLE AS
subcommands required restructuring some EXPLAIN-related APIs. Add-on code
that calls ExplainOnePlan or ExplainOneUtility, or uses
ExplainOneQuery_hook, will need adjustment.
Also, the cases PREPARE ... SELECT INTO and CREATE RULE ... SELECT INTO,
which formerly were accepted though undocumented, are no longer accepted.
The PREPARE case can be replaced with use of CREATE TABLE AS EXECUTE.
The CREATE RULE case doesn't seem to have much real-world use (since the
rule would work only once before failing with "table already exists"),
so we'll not bother with that one.
Both SELECT INTO and CREATE TABLE AS still return a command tag of
"SELECT nnnn". There was some discussion of returning "CREATE TABLE nnnn",
but for the moment backwards compatibility wins the day.
Andres Freund and Tom Lane
This commit changes index-only scans so that data is read directly from the
index tuple without first generating a faux heap tuple. The only immediate
benefit is that indexes on system columns (such as OID) can be used in
index-only scans, but this is necessary infrastructure if we are ever to
support index-only scans on expression indexes. The executor is now ready
for that, though the planner still needs substantial work to recognize
the possibility.
To do this, Vars in index-only plan nodes have to refer to index columns
not heap columns. I introduced a new special varno, INDEX_VAR, to mark
such Vars to avoid confusion. (In passing, this commit renames the two
existing special varnos to OUTER_VAR and INNER_VAR.) This allows
ruleutils.c to handle them with logic similar to what we use for subplan
reference Vars.
Since index-only scans are now fundamentally different from regular
indexscans so far as their expression subtrees are concerned, I also chose
to change them to have their own plan node type (and hence, their own
executor source file).
Due to tuple-slot mismanagement, evaluation of WHEN conditions for AFTER
ROW UPDATE triggers could crash if there had been a BEFORE ROW trigger
fired for the same update. Fix by not trying to overload the use of
estate->es_trig_tuple_slot. Per report from Yoran Heling.
Back-patch to 9.0, when trigger WHEN conditions were introduced.
Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
The originally committed patch for modifying CTEs didn't interact well
with EXPLAIN, as noted by myself, and also had corner-case problems with
triggers, as noted by Dean Rasheed. Those problems show it is really not
practical for ExecutorEnd to call any user-defined code; so split the
cleanup duties out into a new function ExecutorFinish, which must be called
between the last ExecutorRun call and ExecutorEnd. Some Asserts have been
added to these functions to help verify correct usage.
It is no longer necessary for callers of the executor to call
AfterTriggerBeginQuery/AfterTriggerEndQuery for themselves, as this is now
done by ExecutorStart/ExecutorFinish respectively. If you really need to
suppress that and do it for yourself, pass EXEC_FLAG_SKIP_TRIGGERS to
ExecutorStart.
Also, refactor portal commit processing to allow for the possibility that
PortalDrop will invoke user-defined code. I think this is not actually
necessary just yet, since the portal-execution-strategy logic forces any
non-pure-SELECT query to be run to completion before we will consider
committing. But it seems like good future-proofing.
This patch implements data-modifying WITH queries according to the
semantics that the updates all happen with the same command counter value,
and in an unspecified order. Therefore one WITH clause can't see the
effects of another, nor can the outer query see the effects other than
through the RETURNING values. And attempts to do conflicting updates will
have unpredictable results. We'll need to document all that.
This commit just fixes the code; documentation updates are waiting on
author.
Marko Tiikkaja and Hitoshi Harada
This is a heavily revised version of builtin_knngist_core-0.9. The
ordering operators are no longer mixed in with actual quals, which would
have confused not only humans but significant parts of the planner.
Instead, ordering operators are carried separately throughout planning and
execution.
Since the API for ambeginscan and amrescan functions had to be changed
anyway, this commit takes the opportunity to rationalize that a bit.
RelationGetIndexScan no longer forces a premature index_rescan call;
instead, callers of index_beginscan must call index_rescan too. Aside from
making the AM-side initialization logic a bit less peculiar, this has the
advantage that we do not make a useless extra am_rescan call when there are
runtime key values. AMs formerly could not assume that the key values
passed to amrescan were actually valid; now they can.
Teodor Sigaev and Tom Lane
from defining non-self-conflicting constraints.
Jeff Davis
Note: I (tgl) objected to removing this check in 9.0 on the grounds that it
was an important sanity check in new, poorly tested code. However, it should
be all right to remove it for 9.1, since we'll get field testing from the
9.0 branch.
VACUUM FULL INPLACE), along with a boatload of subsidiary code and complexity.
Per discussion, the use case for this method of vacuuming is no longer large
enough to justify maintaining it; not to mention that we don't wish to invest
the work that would be needed to make it play nicely with Hot Standby.
Aside from the code directly related to old-style VACUUM FULL, this commit
removes support for certain WAL record types that could only be generated
within VACUUM FULL, redirect-pointer removal in heap_page_prune, and
nontransactional generation of cache invalidation sinval messages (the last
being the sticking point for Hot Standby).
We still have to retain all code that copes with finding HEAP_MOVED_OFF and
HEAP_MOVED_IN flag bits on existing tuples. This can't be removed as long
as we want to support in-place update from pre-9.0 databases.
expressions: FormIndexDatum requires the estate's scantuple to already point
at the tuple the values are supposedly being extracted from. Adjust test
case so that this type of confusion will be exposed.
Per report from hubert depesz lubaczewski.
support any indexable commutative operator, not just equality. Two rows
violate the exclusion constraint if "row1.col OP row2.col" is TRUE for
each of the columns in the constraint.
Jeff Davis, reviewed by Robert Haas
checked to determine whether the trigger should be fired.
For BEFORE triggers this is mostly a matter of spec compliance; but for AFTER
triggers it can provide a noticeable performance improvement, since queuing of
a deferred trigger event and re-fetching of the row(s) at end of statement can
be short-circuited if the trigger does not need to be fired.
Takahiro Itagaki, reviewed by KaiGai Kohei.
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
execMain.c and into a new plan node type LockRows. Like the recent change
to put table updating into a ModifyTable plan node, this increases planning
flexibility by allowing the operations to occur below the top level of the
plan tree. It's necessary in any case to restore the previous behavior of
having FOR UPDATE locking occur before ModifyTable does.
This partially refactors EvalPlanQual to allow multiple rows-under-test
to be inserted into the EPQ machinery before starting an EPQ test query.
That isn't sufficient to fix EPQ's general bogosity in the face of plans
that return multiple rows per test row, though. Since this patch is
mostly about getting some plan node infrastructure in place and not about
fixing ten-year-old bugs, I will leave EPQ improvements for another day.
Another behavioral change that we could now think about is doing FOR UPDATE
before LIMIT, but that too seems like it should be treated as a followon
patch.
friends). This code has all been ifdef'd out for many years, and doesn't
seem to have any prospect of becoming any more useful in the future.
EXPLAIN ANALYZE is what people use in practice, and I think if we did want
process-wide counters we'd be more likely to put in dtrace events for that
than try to resurrect this code. Get rid of it so as to have one less detail
to worry about while refactoring execMain.c.
TupleTableSlot nodes. This eliminates the need to count in advance
how many Slots will be needed, which seems more than worth the small
increase in the amount of palloc traffic during executor startup.
The ExecCountSlots infrastructure is now all dead code, but I'll remove it
in a separate commit for clarity.
Per a comment from Robert Haas.
The current implementation fires an AFTER ROW trigger for each tuple that
looks like it might be non-unique according to the index contents at the
time of insertion. This works well as long as there aren't many conflicts,
but won't scale to massive unique-key reassignments. Improving that case
is a TODO item.
Dean Rasheed
memory leakage in error recovery. We were calling FreeExprContext, and
therefore invoking ExprContextCallback callbacks, in both normal and error
exits from subtransactions. However this isn't very safe, as shown in
recent trouble report from Frank van Vugt, in which releasing a tupledesc
refcount failed. It's also unnecessary, since the resources that callbacks
might wish to release should be cleaned up by other error recovery mechanisms
(ie the resource owners). We only really want FreeExprContext to release
memory attached to the exprcontext in the error-exit case. So, add a bool
parameter to FreeExprContext to tell it not to call the callbacks.
A more general solution would be to pass the isCommit bool parameter on to
the callbacks, so they could do only safe things during error exit. But
that would make the patch significantly more invasive and possibly break
third-party code that registers ExprContextCallback callbacks. We might want
to do that later in HEAD, but for now I'll just do what seems reasonable to
back-patch.
for simple Var targetlist entries all the time, even when there are other
entries that are not simple Vars. Also, ensure that we prefetch attributes
(with slot_getsomeattrs) for all Vars in the targetlist, even those buried
within expressions. In combination these changes seem to significantly
reduce the runtime for cases where tlists are mostly but not exclusively
Vars. Per my proposal of yesterday.
filter to be used when INSERT or SELECT INTO has a plan that returns raw
disk tuples. The virtual-tuple-slot optimizations that were put in place
awhile ago mean that ExecInsert has to do ExecMaterializeSlot, and that
already copies the tuple if it's raw (and does so more efficiently than
a junk filter, too). So get rid of that logic. This in turn means that
we can throw away ExecMayReturnRawTuples, which wasn't used for any other
purpose, and was always a kluge anyway.
In passing, move a couple of SELECT-INTO-specific fields out of EState
and into the private state of the SELECT INTO DestReceiver, as was foreseen
in an old comment there. Also make intorel_receive use ExecMaterializeSlot
not ExecCopySlotTuple, for consistency with ExecInsert and to possibly save
a tuple copy step in some cases.
but no database changes have been made since the last CommandCounterIncrement.
This should result in a significant improvement in the number of "commands"
that can typically be performed within a transaction before hitting the 2^32
CommandId size limit. In particular this buys back (and more) the possible
adverse consequences of my previous patch to fix plan caching behavior.
The implementation requires tracking whether the current CommandCounter
value has been "used" to mark any tuples. CommandCounter values stored into
snapshots are presumed not to be used for this purpose. This requires some
small executor changes, since the executor used to conflate the curcid of
the snapshot it was using with the command ID to mark output tuples with.
Separating these concepts allows some small simplifications in executor APIs.
Something for the TODO list: look into having CommandCounterIncrement not do
AcceptInvalidationMessages. It seems fairly bogus to be doing it there,
but exactly where to do it instead isn't clear, and I'm disinclined to mess
with asynchronous behavior during late beta.
columns, and the new version can be stored on the same heap page, we no longer
generate extra index entries for the new version. Instead, index searches
follow the HOT-chain links to ensure they find the correct tuple version.
In addition, this patch introduces the ability to "prune" dead tuples on a
per-page basis, without having to do a complete VACUUM pass to recover space.
VACUUM is still needed to clean up dead index entries, however.
Pavan Deolasee, with help from a bunch of other people.
are not one of the query's defined result relations, but nonetheless have
triggers fired against them while the query is active. This was formerly
impossible but can now occur because of my recent patch to fix the firing
order for RI triggers. Caching a ResultRelInfo avoids duplicating work by
repeatedly opening and closing the same relation, and also allows EXPLAIN
ANALYZE to "see" and report on these extra triggers. Use the same mechanism
to cache open relations when firing deferred triggers at transaction shutdown;
this replaces the former one-element-cache strategy used in that case, and
should improve performance a bit when there are deferred triggers on a number
of relations.
parent query's EState. Now that there's a single flat rangetable for both
the main plan and subplans, there's no need anymore for a separate EState,
and removing it allows cleaning up some crufty code in nodeSubplan.c and
nodeSubqueryscan.c. Should be a tad faster too, although any difference
will probably be hard to measure. This is the last bit of subsidiary
mop-up work from changing to a flat rangetable.
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
storing mostly-redundant Query trees in prepared statements, portals, etc.
To replace Query, a new node type called PlannedStmt is inserted by the
planner at the top of a completed plan tree; this carries just the fields of
Query that are still needed at runtime. The statement lists kept in portals
etc. now consist of intermixed PlannedStmt and bare utility-statement nodes
--- no Query. This incidentally allows us to remove some fields from Query
and Plan nodes that shouldn't have been there in the first place.
Still to do: simplify the execution-time range table; at the moment the
range table passed to the executor still contains Query trees for subqueries.
initdb forced due to change of stored rules.
out that ExecEvalVar and friends don't necessarily have access to a tuple
descriptor with correct typmod: it definitely can contain -1, and possibly
might contain other values that are different from the Var's value.
Arguably this should be cleaned up someday, but it's not a simple change,
and in any case typmod discrepancies don't pose a security hazard.
Per reports from numerous people :-(
I'm not entirely sure whether the failure can occur in 8.0 --- the simple
test cases reported so far don't trigger it there. But back-patch the
change all the way anyway.
made query plan. Use of ALTER COLUMN TYPE creates a hazard for cached
query plans: they could contain Vars that claim a column has a different
type than it now has. Fix this by checking during plan startup that Vars
at relation scan level match the current relation tuple descriptor. Since
at that point we already have at least AccessShareLock, we can be sure the
column type will not change underneath us later in the query. However,
since a backend's locks do not conflict against itself, there is still a
hole for an attacker to exploit: he could try to execute ALTER COLUMN TYPE
while a query is in progress in the current backend. Seal that hole by
rejecting ALTER TABLE whenever the target relation is already open in
the current backend.
This is a significant security hole: not only can one trivially crash the
backend, but with appropriate misuse of pass-by-reference datatypes it is
possible to read out arbitrary locations in the server process's memory,
which could allow retrieving database content the user should not be able
to see. Our thanks to Jeff Trout for the initial report.
Security: CVE-2007-0556
involving HashAggregate over SubqueryScan (this is the known case, there
may well be more). The bug is only latent in releases before 8.2 since they
didn't try to access tupletable slots' descriptors during ExecDropTupleTable.
The least bogus fix seems to be to make subqueries share the parent query's
memory context, so that tupdescs they create will have the same lifespan as
those of the parent query. There are comments in the code envisioning going
even further by not having a separate child EState at all, but that will
require rethinking executor access to range tables, which I don't want to
tackle right now. Per bug report from Jean-Pierre Pelletier.