This patch is a no-op patch which is intended to reduce the chances
of failures of omission once the functional part of the "snapshot
too old" patch goes in. It adds parameters for snapshot, relation,
and an enum to specify whether the snapshot age check needs to be
done for the page at this point. This initial patch passes NULL
for the first two new parameters and BGP_NO_SNAPSHOT_TEST for the
third. The follow-on patch will change the places where the test
needs to be made.
Now indexes (but only B-tree for now) can contain "extra" column(s) which
doesn't participate in index structure, they are just stored in leaf
tuples. It allows to use index only scan by using single index instead
of two or more indexes.
Author: Anastasia Lubennikova with minor editorializing by me
Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
This patch reduces pg_am to just two columns, a name and a handler
function. All the data formerly obtained from pg_am is now provided
in a C struct returned by the handler function. This is similar to
the designs we've adopted for FDWs and tablesample methods. There
are multiple advantages. For one, the index AM's support functions
are now simple C functions, making them faster to call and much less
error-prone, since the C compiler can now check function signatures.
For another, this will make it far more practical to define index access
methods in installable extensions.
A disadvantage is that SQL-level code can no longer see attributes
of index AMs; in particular, some of the crosschecks in the opr_sanity
regression test are no longer possible from SQL. We've addressed that
by adding a facility for the index AM to perform such checks instead.
(Much more could be done in that line, but for now we're content if the
amvalidate functions more or less replace what opr_sanity used to do.)
We might also want to expose some sort of reporting functionality, but
this patch doesn't do that.
Alexander Korotkov, reviewed by Petr Jelínek, and rather heavily
editorialized on by me.
Commit 013ebc0a7b7ea9c1b1ab7a3d4dd75ea121ea8ba7 introduces microvacuum for
GiST, deletetion of tuple marked LP_DEAD uses IndexPageMultiDelete while
recovery code uses IndexPageTupleDelete in loop. This causes a difference
in offset numbers of tuples to delete. Patch introduces usage of
IndexPageMultiDelete in GiST except gistplacetopage() where only one tuple is
deleted at once. That also slightly improve performance, because
IndexPageMultiDelete is more effective.
Patch changes WAL format, so bump wal page magic.
Bug report from Jeff Janes
Diagnostic and patch by Anastasia Lubennikova and me
Mark index tuple as dead if it's pointed by kill_prior_tuple during
ordinary (search) scan and remove it during insert process if there is no
enough space for new tuple to insert. This improves select performance
because index will not return tuple marked as dead and improves insert
performance because it reduces number of page split.
Anastasia Lubennikova <a.lubennikova@postgrespro.ru> with
minor editorialization by me
This adds a new GiST opclass method, 'fetch', which is used to reconstruct
the original Datum from the value stored in the index. Also, the 'canreturn'
index AM interface function gains a new 'attno' argument. That makes it
possible to use index-only scans on a multi-column index where some of the
opclasses support index-only scans but some do not.
This patch adds support in the box and point opclasses. Other opclasses
can added later as follow-on patches (btree_gist would be particularly
interesting).
Anastasia Lubennikova, with additional fixes and modifications by me.
Each WAL record now carries information about the modified relation and
block(s) in a standardized format. That makes it easier to write tools that
need that information, like pg_rewind, prefetching the blocks to speed up
recovery, etc.
There's a whole new API for building WAL records, replacing the XLogRecData
chains used previously. The new API consists of XLogRegister* functions,
which are called for each buffer and chunk of data that is added to the
record. The new API also gives more control over when a full-page image is
written, by passing flags to the XLogRegisterBuffer function.
This also simplifies the XLogReadBufferForRedo() calls. The function can dig
the relation and block number from the WAL record, so they no longer need to
be passed as arguments.
For the convenience of redo routines, XLogReader now disects each WAL record
after reading it, copying the main data part and the per-block data into
MAXALIGNed buffers. The data chunks are not aligned within the WAL record,
but the redo routines can assume that the pointers returned by XLogRecGet*
functions are. Redo routines are now passed the XLogReaderState, which
contains the record in the already-disected format, instead of the plain
XLogRecord.
The new record format also makes the fixed size XLogRecord header smaller,
by removing the xl_len field. The length of the "main data" portion is now
stored at the end of the WAL record, and there's a separate header after
XLogRecord for it. The alignment padding at the end of XLogRecord is also
removed. This compansates for the fact that the new format would otherwise
be more bulky than the old format.
Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera,
Fujii Masao.
The page splitting code would go into infinite recursion if you try to
insert an index tuple that doesn't fit even on an empty page.
Per analysis and suggested fix by Andrew Gierth. Fixes bug #11555, reported
by Bryan Seitz (analysis happened over IRC). Backpatch to all supported
versions.
log_newpage is used by many indexams, in addition to heap, but for
historical reasons it's always been part of the heapam rmgr. Starting with
9.3, we have another WAL record type for logging an image of a page,
XLOG_FPI. Simplify things by moving log_newpage and log_newpage_buffer to
xlog.c, and switch to using the XLOG_FPI record type.
Bump the WAL version number because the code to replay the old HEAP_NEWPAGE
records is removed.
Memory allocation can fail if you run out of memory, and inside a critical
section that will lead to a PANIC. Use conservatively-sized arrays in stack
instead.
There was previously no explicit limit on the number of pages a GiST split
can produce, it was only limited by the number of LWLocks that can be held
simultaneously (100 at the moment). This patch adds an explicit limit of 75
pages. That should be plenty, a typical split shouldn't produce more than
2-3 page halves.
The bug has been there forever, but only backpatch down to 9.1. The code
was changed significantly in 9.1, and it doesn't seem worth the risk or
trouble to adapt this for 9.0 and 8.4.
Remove use of PageSetTLI() from all page manipulation functions
and adjust README to indicate change in the way we make changes
to pages. Repurpose those bytes into the pd_checksum field and
explain how that works in comments about page header.
Refactoring ahead of actual feature patch which would make use
of the checksum field, arriving later.
Jeff Davis, with comments and doc changes by Simon Riggs
Direction suggested by Robert Haas; many others providing
review comments.
The reason this wasn't supported before was that GiST indexes need an
increasing sequence to detect concurrent page-splits. In a regular WAL-
logged GiST index, the LSN of the page-split record is used for that
purpose, and in a temporary index, we can get away with a backend-local
counter. Neither of those methods works for an unlogged relation.
To provide such an increasing sequence of numbers, create a "fake LSN"
counter that is saved and restored across shutdowns. On recovery, unlogged
relations are blown away, so the counter doesn't need to survive that
either.
Jeevan Chalke, based on discussions with Robert Haas, Tom Lane and me.
Improve comments, rename some variables and functions, slightly simplify
a couple of APIs, in an attempt to make this code readable by people other
than its original author.
Even though this is essentially just cosmetic, back-patch to all active
branches, because otherwise it's going to make back-patching future fixes
in this file very painful.
The patch that turned XLogRecPtr into a uint64 inadvertently changed the
on-disk format of GiST indexes, because the NSN field in the GiST page
opaque is an XLogRecPtr. That breaks pg_upgrade. Revert the format of that
field back to the two-field struct that XLogRecPtr was before. This is the
same we did to LSNs in the page header to avoid changing on-disk format.
Bump catversion, as this invalidates any existing GiST indexes built on
9.3devel.
This gets rid of XLByteLT, XLByteLE, XLByteEQ and XLByteAdvance.
These were useful for brevity when XLogRecPtrs were split in
xlogid/xrecoff; but now that they are simple uint64's, they are just
clutter. The only downside to making this change would be ease of
backporting patches, but that has been negated by other substantive
changes to the involved code anyway. The clarity of simpler expressions
makes the change worthwhile.
Most of the changes are mechanical, but in a couple of places, the patch
author chose to invert the operator sense, making the code flow more
logical (and more in line with preceding comments).
Author: Andres Freund
Eyeballed by Dimitri Fontaine and Alvaro Herrera
We use a hash table to track the parents of inner pages, but when inserting
to a leaf page, the caller of gistbufferinginserttuples() must pass a
correct block number of the leaf's parent page. Before gistProcessItup()
descends to a child page, it checks if the downlink needs to be adjusted to
accommodate the new tuple, and updates the downlink if necessary. However,
updating the downlink might require splitting the page, which might move the
downlink to a page to the right. gistProcessItup() doesn't realize that, so
when it descends to the leaf page, it might pass an out-of-date parent block
number as a result. Fix that by returning the block a tuple was inserted to
from gistbufferinginserttuples().
This fixes the bug reported by Zdeněk Jílovec.
This simplifies code that needs to do arithmetic on XLogRecPtrs.
To avoid changing on-disk format of data pages, the LSN on data pages is
still stored in the old format. That should keep pg_upgrade happy. However,
we have XLogRecPtrs embedded in the control file, and in the structs that
are sent over the replication protocol, so this changes breaks compatibility
of pg_basebackup and server. I didn't do anything about this in this patch,
per discussion on -hackers, the right thing to do would to be to change the
replication protocol to be architecture-independent, so that you could use
a newer version of pg_receivexlog, for example, against an older server
version.
When inserting the downlinks for a split gist page, we used hold the locks
on the child pages until the insertion into the parent - and recursively its
parent if it had to be split too - were all completed. Change that so that
the locks on child pages are released after the insertion in the immediate
parent is done, before recursing further up the tree.
This reduces the number of lwlocks that are held simultaneously. Holding
many locks is bad for concurrency, and in extreme cases you can even hit
the limit of 100 simultaneously held lwlocks in a backend. If you're really
unlucky, you can hit the limit while in a critical section, which brings
down the whole system.
This fixes bug #6629 reported by Tom Forbes. Backpatch to 9.1. The page
splitting code was rewritten in 9.1, and the old code did not have this
problem.
pg_trgm was already doing this unofficially, but the implementation hadn't
been thought through very well and leaked memory. Restructure the core
GiST code so that it actually works, and document it. Ordinarily this
would have required an extra memory context creation/destruction for each
GiST index search, but I was able to avoid that in the normal case of a
non-rescanned search by finessing the handling of the RBTree. It used to
have its own context always, but now shares a context with the
scan-lifespan data structures, unless there is more than one rescan call.
This should make the added overhead unnoticeable in typical cases.
When building a GiST index that doesn't fit in cache, buffers are attached
to some internal nodes in the index. This speeds up the build by avoiding
random I/O that would otherwise be needed to traverse all the way down the
tree to the find right leaf page for tuple.
Alexander Korotkov
GISTInsertStack.childoffnum used to mean "offset of the downlink in this
node, pointing to the child node in the stack". It's now replaced with
downlinkoffnum, which means "offset of the downlink in the parent of this
node". gistFindPath() already used childoffnum with this new meaning, and
had an extra step at the end to pull all the childoffnum values down one
node in the stack, to adjust the stack for the meaning that childoffnum had
elsewhere. That's no longer required.
The reason to do this now is this new representation is more convenient for
the GiST fast build patch that Alexander Korotkov is working on.
While we're at it, replace the linked list used in gistFindPath with a
standard List, and make gistFindPath() static.
Alexander Korotkov, with some changes by me.
First, when following a right-link, we incorrectly marked the current page
as the parent of the right sibling. In reality, the parent of the right page
is the same as the parent of the current page (or some page to the right of
it, gistFindCorrectParent() will sort that out).
Secondly, when we follow a right-link, we must prepend, not append, the right
page to our list of pages to visit. That's because we assume that once we
hit a leaf page in the list, all the rest are leaf pages too, and give up.
To hit these bugs, you need concurrent actions and several unlucky accidents.
Another backend must split the root page, while you're in process of
splitting a lower-level page. Furthermore, while you scan the internal nodes
to re-find the parent, another backend needs to again split some more internal
pages. Even then, the bugs don't necessarily manifest as user-visible errors
or index corruption.
While we're at it, make the error reporting a bit better if gistFindPath()
fails to re-find the parent. It used to be an assertion, but an elog() seems
more appropriate.
Backpatch to all supported branches.
Experimentation with contrib/btree_gist shows that the majority of the GIST
support functions potentially need collation information. Safest policy
seems to be to pass it to all of them, instead of making assumptions about
which ones could possibly need it.
The contents of an unlogged table are WAL-logged; thus, they are not
available on standby servers and are truncated whenever the database
system enters recovery. Indexes on unlogged tables are also unlogged.
Unlogged GiST indexes are not currently supported.
cleanup stage to finish incomplete inserts or splits anymore. There was two
reasons for the cleanup step:
1. When a new tuple was inserted to a leaf page, the downlink in the parent
needed to be updated to contain (ie. to be consistent with) the new key.
Updating the parent in turn might require recursively updating the parent of
the parent. We now handle that by updating the parent while traversing down
the tree, so that when we insert the leaf tuple, all the parents are already
consistent with the new key, and the tree is consistent at every step.
2. When a page is split, we need to insert the downlink for the new right
page(s), and update the downlink for the original page to not include keys
that moved to the right page(s). We now handle that by setting a new flag,
F_FOLLOW_RIGHT, on the non-rightmost pages in the split. When that flag is
set, scans always follow the rightlink, regardless of the NSN mechanism used
to detect concurrent page splits. That way the tree is consistent right after
split, even though the downlink is still missing. This is very similar to the
way B-tree splits are handled. When the downlink is inserted in the parent,
the flag is cleared. To keep the insertion algorithm simple, when an
insertion sees an incomplete split, indicated by the F_FOLLOW_RIGHT flag, it
finishes the split before doing anything else.
These changes allow removing the whole "invalid tuple" mechanism, but I
retained the scan code to still follow invalid tuples correctly. While we
don't create any such tuples anymore, we want to handle them gracefully in
case you pg_upgrade a GiST index that has them. If we encounter any on an
insert, though, we just throw an error saying that you need to REINDEX.
The issue that got me into doing this is that if you did a checkpoint while
an insert or split was in progress, and the checkpoint finishes quickly so
that there is no WAL record related to the insert between RedoRecPtr and the
checkpoint record, recovery from that checkpoint would not know to finish
the incomplete insert. IOW, we have the same issue we solved with the
rm_safe_restartpoint mechanism during normal operation too. It's highly
unlikely to happen in practice, and this fix is far too large to backpatch,
so we're just going to live with in previous versions, but this refactoring
fixes it going forward.
With this patch, you don't get the annoying
'index "FOO" needs VACUUM or REINDEX to finish crash recovery' notices
anymore if you crash at an unfortunate moment.
This commit replaces pg_class.relistemp with pg_class.relpersistence;
and also modifies the RangeVar node type to carry relpersistence rather
than istemp. It also removes removes rd_istemp from RelationData and
instead performs the correct computation based on relpersistence.
For clarity, we add three new macros: RelationNeedsWAL(),
RelationUsesLocalBuffers(), and RelationUsesTempNamespace(), so that we
can clarify the purpose of each check that previous depended on
rd_istemp.
This is intended as infrastructure for the upcoming unlogged tables
patch, as well as for future possible work on global temporary tables.
This commit represents a rather heavily editorialized version of
Teodor's builtin_knngist_itself-0.8.2 and builtin_knngist_proc-0.8.1
patches. I redid the opclass API to add a separate Distance method
instead of turning the Consistent method into an illogical mess,
fixed some bit-rot in the rbtree interfaces, and generally worked over
the code style and comments.
There's still no non-code documentation to speak of, but I'll work on
that separately. Some contrib-module changes are also yet to come
(right now, point <-> point is the only KNN-ified operator).
Teodor Sigaev and Tom Lane
temporary indexes are not WAL-logged. We used a constant LSN for temporary
indexes, on the assumption that we don't need to worry about concurrent page
splits in temporary indexes because they're only visible to the current
session. But that assumption is wrong, it's possible to insert rows and
split pages in the same session, while a scan is in progress. For example,
by opening a cursor and fetching some rows, and INSERTing new rows before
fetching some more.
Fix by generating fake increasing LSNs, used in place of real LSNs in
temporary GiST indexes.
The current implementation fires an AFTER ROW trigger for each tuple that
looks like it might be non-unique according to the index contents at the
time of insertion. This works well as long as there aren't many conflicts,
but won't scale to massive unique-key reassignments. Improving that case
is a TODO item.
Dean Rasheed