are not one of the query's defined result relations, but nonetheless have
triggers fired against them while the query is active. This was formerly
impossible but can now occur because of my recent patch to fix the firing
order for RI triggers. Caching a ResultRelInfo avoids duplicating work by
repeatedly opening and closing the same relation, and also allows EXPLAIN
ANALYZE to "see" and report on these extra triggers. Use the same mechanism
to cache open relations when firing deferred triggers at transaction shutdown;
this replaces the former one-element-cache strategy used in that case, and
should improve performance a bit when there are deferred triggers on a number
of relations.
parent query's EState. Now that there's a single flat rangetable for both
the main plan and subplans, there's no need anymore for a separate EState,
and removing it allows cleaning up some crufty code in nodeSubplan.c and
nodeSubqueryscan.c. Should be a tad faster too, although any difference
will probably be hard to measure. This is the last bit of subsidiary
mop-up work from changing to a flat rangetable.
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
storing mostly-redundant Query trees in prepared statements, portals, etc.
To replace Query, a new node type called PlannedStmt is inserted by the
planner at the top of a completed plan tree; this carries just the fields of
Query that are still needed at runtime. The statement lists kept in portals
etc. now consist of intermixed PlannedStmt and bare utility-statement nodes
--- no Query. This incidentally allows us to remove some fields from Query
and Plan nodes that shouldn't have been there in the first place.
Still to do: simplify the execution-time range table; at the moment the
range table passed to the executor still contains Query trees for subqueries.
initdb forced due to change of stored rules.
out that ExecEvalVar and friends don't necessarily have access to a tuple
descriptor with correct typmod: it definitely can contain -1, and possibly
might contain other values that are different from the Var's value.
Arguably this should be cleaned up someday, but it's not a simple change,
and in any case typmod discrepancies don't pose a security hazard.
Per reports from numerous people :-(
I'm not entirely sure whether the failure can occur in 8.0 --- the simple
test cases reported so far don't trigger it there. But back-patch the
change all the way anyway.
made query plan. Use of ALTER COLUMN TYPE creates a hazard for cached
query plans: they could contain Vars that claim a column has a different
type than it now has. Fix this by checking during plan startup that Vars
at relation scan level match the current relation tuple descriptor. Since
at that point we already have at least AccessShareLock, we can be sure the
column type will not change underneath us later in the query. However,
since a backend's locks do not conflict against itself, there is still a
hole for an attacker to exploit: he could try to execute ALTER COLUMN TYPE
while a query is in progress in the current backend. Seal that hole by
rejecting ALTER TABLE whenever the target relation is already open in
the current backend.
This is a significant security hole: not only can one trivially crash the
backend, but with appropriate misuse of pass-by-reference datatypes it is
possible to read out arbitrary locations in the server process's memory,
which could allow retrieving database content the user should not be able
to see. Our thanks to Jeff Trout for the initial report.
Security: CVE-2007-0556
involving HashAggregate over SubqueryScan (this is the known case, there
may well be more). The bug is only latent in releases before 8.2 since they
didn't try to access tupletable slots' descriptors during ExecDropTupleTable.
The least bogus fix seems to be to make subqueries share the parent query's
memory context, so that tupdescs they create will have the same lifespan as
those of the parent query. There are comments in the code envisioning going
even further by not having a separate child EState at all, but that will
require rethinking executor access to range tables, which I don't want to
tackle right now. Per bug report from Jean-Pierre Pelletier.
that's shorter-lived than the expression state being evaluated in it really
doesn't work :-( --- we end up with fn_extra caches getting deleted while
still in use. Rather than abandon the notion of caching expression state
across domain_in calls altogether, I chose to make domain_in a bit cozier
with ExprContext. All we really need for evaluating variable-free
expressions is an ExprContext, not an EState, so I invented the notion of a
"standalone" ExprContext. domain_in can prevent resource leakages by doing
a ReScanExprContext on this rather than having to free it entirely; so we
can make the ExprContext have the same lifespan (and particularly the same
per_query memory context) as the expression state structs.
(table or index) before trying to open its relcache entry. This fixes
race conditions in which someone else commits a change to the relation's
catalog entries while we are in process of doing relcache load. Problems
of that ilk have been reported sporadically for years, but it was not
really practical to fix until recently --- for instance, the recent
addition of WAL-log support for in-place updates helped.
Along the way, remove pg_am.amconcurrent: all AMs are now expected to support
concurrent update.
by creating a reference-count mechanism, similar to what we did a long time
ago for catcache entries. The back branches have an ugly solution involving
lots of extra copies, but this way is more efficient. Reference counting is
only applied to tupdescs that are actually in caches --- there seems no need
to use it for tupdescs that are generated in the executor, since they'll go
away during plan shutdown by virtue of being in the per-query memory context.
Neil Conway and Tom Lane
support both FOR UPDATE and FOR SHARE in one command, as well as both
NOWAIT and normal WAIT behavior. The more general code is actually
simpler and cleaner.
isn't being used anywhere anymore, and there seems no point in a generic
index_keytest() routine when two out of three remaining access methods
aren't using it. Also, add a comment documenting a convention for
letting access methods define private flag bits in ScanKey sk_flags.
There are no such flags at the moment but I'm thinking about changing
btree's handling of "required keys" to use flag bits in the keys
rather than a count of required key positions. Also, if some AM did
still want SK_NEGATE then it would be reasonable to treat it as a private
flag bit.
if we already have a stronger lock due to the index's table being the
update target table of the query. Same optimization I applied earlier
at the table level. There doesn't seem to be much interest in the more
radical idea of not locking indexes at all, so do what we can ...
relation if it's already been locked by execMain.c as either a result
relation or a FOR UPDATE/SHARE relation. This avoids an extra trip to
the shared lock manager state. Per my suggestion yesterday.
generate their output tuple descriptors from their target lists (ie, using
ExecAssignResultTypeFromTL()). We long ago fixed things so that all node
types have minimally valid tlists, so there's no longer any good reason to
have two different ways of doing it. This change is needed to fix bug
reported by Hayden James: the fix of 2005-11-03 to emit the correct column
names after optimizing away a SubqueryScan node didn't work if the new
top-level plan node used ExecAssignResultTypeFromOuterPlan to generate its
tupdesc, since the next plan node down won't have the correct column labels.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
slot of the topmost plan node when a trigger returns a modified tuple.
These appear to be the only places where a plan node's caller did not
treat the result slot as read-only, which is an assumption that nodeUnique
makes as of 8.1. Fixes trigger-vs-DISTINCT bug reported by Frank van Vugt.
(a/k/a SELECT INTO). Instead, flush and fsync the whole relation before
committing. We do still need the WAL log when PITR is active, however.
Simon Riggs and Tom Lane.
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.
ExprContexts will be freed anyway when FreeExecutorState() is reached,
and letting that routine do the work is more efficient because it will
automatically free the ExprContexts in reverse creation order. The
existing coding was effectively freeing them in exactly the worst
possible order, resulting in O(N^2) behavior inside list_delete_ptr,
which becomes highly visible in cases with a few thousand plan nodes.
ExecFreeExprContext is now effectively a no-op and could be removed,
but I left it in place in case we ever want to put it back to use.
indexes. Replace all heap_openr and index_openr calls by heap_open
and index_open. Remove runtime lookups of catalog OID numbers in
various places. Remove relcache's support for looking up system
catalogs by name. Bulky but mostly very boring patch ...
few palloc's. I also chose to eliminate the restype and restypmod fields
entirely, since they are redundant with information stored in the node's
contained expression; re-examining the expression at need seems simpler
and more reliable than trying to keep restype/restypmod up to date.
initdb forced due to change in contents of stored rules.
convention for isnull flags. Also, remove the useless InsertIndexResult
return struct from index AM aminsert calls --- there is no reason for
the caller to know where in the index the tuple was inserted, and we
were wasting a palloc cycle per insert to deliver this uninteresting
value (plus nontrivial complexity in some AMs).
I forced initdb because of the change in the signature of the aminsert
routines, even though nothing really looks at those pg_proc entries...
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
now are supposed to take some kind of lock on an index whenever you
are going to access the index contents, rather than relying only on a
lock on the parent table.
((Snapshot) NULL) can no longer be confused with a valid snapshot,
as per my recent suggestion. Define a macro InvalidSnapshot for 0.
Use InvalidSnapshot instead of SnapshotAny as the do-nothing special
case for heap_update and heap_delete crosschecks; this seems a little
cleaner even though the behavior is really the same.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
so that the 'val' is computed only once, per recent discussion. The
speedup is not much when 'val' is just a simple variable, but could be
significant for larger expressions. More importantly this avoids issues
with multiple evaluations of a volatile 'val', and it allows the CASE
expression to be reverse-listed in its original form by ruleutils.c.
when scanning a table that we need all the columns from. In case of
SELECT INTO, we have to check that the hasoids flag matches the desired
output type, too. Per report from Mike Mascari.
shut down cleanly if the plan node is ReScanned before the SRFs are run
to completion. This fixes the problem for SQL-language functions, but
still need work on functions using the SRF_XXX() macros.
discussion on pgsql-hackers: in READ COMMITTED mode we just have to force
a QuerySnapshot update in the trigger, but in SERIALIZABLE mode we have
to run the scan under a current snapshot and then complain if any rows
would be updated/deleted that are not visible in the transaction snapshot.
to allow es_snapshot to be set to SnapshotNow rather than a query snapshot.
This solves a bug reported by Wade Klaver, wherein triggers fired as a
result of RI cascade updates could misbehave.
now able to cope with assigning new relfilenode values to nailed-in-cache
indexes, so they can be reindexed using the fully crash-safe method. This
leaves only shared system indexes as special cases. Remove the 'index
deactivation' code, since it provides no useful protection in the shared-
index case. Require reindexing of shared indexes to be done in standalone
mode, but remove other restrictions on REINDEX. -P (IgnoreSystemIndexes)
now prevents using indexes for lookups, but does not disable index updates.
It is therefore safe to allow from PGOPTIONS. Upshot: reindexing system catalogs
can be done without a standalone backend for all cases except
shared catalogs.