Bernd Helmle complained that CreateReplicationSlot() was assigning the
same value to the same variable twice, so we could remove one of them.
Code inspection reveals that we can actually remove both assignments:
according to the author the assignment was there for beauty of the
strlen line only, and another possible fix to that is to put the strlen
in its own line, so do that.
To be consistent within the file, refactor all duplicated strlen()
calls, which is what we do elsewhere in the backend anyway. In
basebackup.c, snprintf already returns the right length; no need for
strlen afterwards.
Backpatch to 9.4, where replication slots were introduced, to keep code
identical. Some of this is older, but the patch doesn't apply cleanly
and it's only of cosmetic value anyway.
Discussion: http://www.postgresql.org/message-id/BE2FD71DEA35A2287EA5F018@eje.credativ.lan
This improves on commit bbfd7edae5aa5ad5553d3c7e102f2e450d4380d4 by
making two simple changes:
* pg_attribute_noreturn now takes parentheses, ie pg_attribute_noreturn().
Likewise pg_attribute_unused(), pg_attribute_packed(). This reduces
pgindent's tendency to misformat declarations involving them.
* attributes are now always attached to function declarations, not
definitions. Previously some places were taking creative shortcuts,
which were not merely candidates for bad misformatting by pgindent
but often were outright wrong anyway. (It does little good to put a
noreturn annotation where callers can't see it.) In any case, if
we would like to believe that these macros can be used with non-gcc
compilers, we should avoid gratuitous variance in usage patterns.
I also went through and manually improved the formatting of a lot of
declarations, and got rid of excessively repetitive (and now obsolete
anyway) comments informing the reader what pg_attribute_printf is for.
Until now __attribute__() was defined to be empty for all compilers but
gcc. That's problematic because it prevents using it in other compilers;
which is necessary e.g. for atomics portability. It's also just
generally dubious to do so in a header as widely included as c.h.
Instead add pg_attribute_format_arg, pg_attribute_printf,
pg_attribute_noreturn macros which are implemented in the compilers that
understand them. Also add pg_attribute_noreturn and pg_attribute_packed,
but don't provide fallbacks, since they can affect functionality.
This means that external code that, possibly unwittingly, relied on
__attribute__ defined to be empty on !gcc compilers may now run into
warnings or errors on those compilers. But there shouldn't be many
occurances of that and it's hard to work around...
Discussion: 54B58BA3.8040302@ohmu.fi
Author: Oskari Saarenmaa, with some minor changes by me.
When beginning streaming replication, the client usually issues the
IDENTIFY_SYSTEM command, which used to return the current WAL insert
position. That's not suitable for the intended purpose of that field,
however. pg_receivexlog uses it to start replication from the reported
point, but if it hasn't been flushed to disk yet, it will fail. Change
IDENTIFY_SYSTEM to report the flush position instead.
Backpatch to 9.1 and above. 9.0 doesn't report any WAL position.
If any error occurred while we were in the middle of reading a protocol
message from the client, we could lose sync, and incorrectly try to
interpret a part of another message as a new protocol message. That will
usually lead to an "invalid frontend message" error that terminates the
connection. However, this is a security issue because an attacker might
be able to deliberately cause an error, inject a Query message in what's
supposed to be just user data, and have the server execute it.
We were quite careful to not have CHECK_FOR_INTERRUPTS() calls or other
operations that could ereport(ERROR) in the middle of processing a message,
but a query cancel interrupt or statement timeout could nevertheless cause
it to happen. Also, the V2 fastpath and COPY handling were not so careful.
It's very difficult to recover in the V2 COPY protocol, so we will just
terminate the connection on error. In practice, that's what happened
previously anyway, as we lost protocol sync.
To fix, add a new variable in pqcomm.c, PqCommReadingMsg, that is set
whenever we're in the middle of reading a message. When it's set, we cannot
safely ERROR out and continue running, because we might've read only part
of a message. PqCommReadingMsg acts somewhat similarly to critical sections
in that if an error occurs while it's set, the error handler will force the
connection to be terminated, as if the error was FATAL. It's not
implemented by promoting ERROR to FATAL in elog.c, like ERROR is promoted
to PANIC in critical sections, because we want to be able to use
PG_TRY/CATCH to recover and regain protocol sync. pq_getmessage() takes
advantage of that to prevent an OOM error from terminating the connection.
To prevent unnecessary connection terminations, add a holdoff mechanism
similar to HOLD/RESUME_INTERRUPTS() that can be used hold off query cancel
interrupts, but still allow die interrupts. The rules on which interrupts
are processed when are now a bit more complicated, so refactor
ProcessInterrupts() and the calls to it in signal handlers so that the
signal handlers always call it if ImmediateInterruptOK is set, and
ProcessInterrupts() can decide to not do anything if the other conditions
are not met.
Reported by Emil Lenngren. Patch reviewed by Noah Misch and Andres Freund.
Backpatch to all supported versions.
Security: CVE-2015-0244
Relying on the normal shared latch simplifies interrupt/signal
handling because we can rely on all signal handlers setting the proc
latch. That in turn allows us to avoid the use of
ImmediateInterruptOK, which arguably isn't correct because
WaitLatchOrSocket isn't declared to be immediately interruptible.
Also change sections that wait on the walsender's latch to notice
interrupts quicker/more reliably and make them more consistent with
each other.
This is part of a larger "get rid of ImmediateInterruptOK" series.
Discussion: 20150115020335.GZ5245@awork2.anarazel.de
Each WAL record now carries information about the modified relation and
block(s) in a standardized format. That makes it easier to write tools that
need that information, like pg_rewind, prefetching the blocks to speed up
recovery, etc.
There's a whole new API for building WAL records, replacing the XLogRecData
chains used previously. The new API consists of XLogRegister* functions,
which are called for each buffer and chunk of data that is added to the
record. The new API also gives more control over when a full-page image is
written, by passing flags to the XLogRegisterBuffer function.
This also simplifies the XLogReadBufferForRedo() calls. The function can dig
the relation and block number from the WAL record, so they no longer need to
be passed as arguments.
For the convenience of redo routines, XLogReader now disects each WAL record
after reading it, copying the main data part and the per-block data into
MAXALIGNed buffers. The data chunks are not aligned within the WAL record,
but the redo routines can assume that the pointers returned by XLogRecGet*
functions are. Redo routines are now passed the XLogReaderState, which
contains the record in the already-disected format, instead of the plain
XLogRecord.
The new record format also makes the fixed size XLogRecord header smaller,
by removing the xl_len field. The length of the "main data" portion is now
stored at the end of the WAL record, and there's a separate header after
XLogRecord for it. The alignment padding at the end of XLogRecord is also
removed. This compansates for the fact that the new format would otherwise
be more bulky than the old format.
Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera,
Fujii Masao.
Previously replication commands like IDENTIFY_COMMAND were not logged
even when log_statements is set to all. Some users who want to audit
all types of statements were not satisfied with this situation. To
address the problem, this commit adds new GUC log_replication_commands.
If it's enabled, all replication commands are logged in the server log.
There are many ways to allow us to enable that logging. For example,
we can extend log_statement so that replication commands are logged
when it's set to all. But per discussion in the community, we reached
the consensus to add separate GUC for that.
Reviewed by Ian Barwick, Robert Haas and Heikki Linnakangas.
When doing logical decoding using START_LOGICAL_REPLICATION in a
walsender process the walsender sometimes was sending out keepalive
messages too frequently. Asking for feedback every time.
WalSndWaitForWal() sends out keepalive messages when it's waiting for
new WAL to be generated locally when it sees that the remote side
hasn't yet flushed WAL up to the local position. That generally is
good but causes problems if the remote side only writes but doesn't
flush changes yet. So check for both remote write and flush position.
Additionally we've asked for feedback to the keepalive message which
isn't warranted when waiting for WAL in contrast to preventing
timeouts because of wal_sender_timeout.
Complaint and patch by Steve Singer.
Change the order of checks in similar functions to be the same; remove
a parameter that's not needed anymore; rename a memory context and
expand a couple of comments.
Per review comments from Amit Kapila
Sometimes CREATE_REPLICATION_SLOT ... LOGICAL ... needs to wait for
further WAL using WalSndWaitForWal(). That used to always respect
wal_sender_timeout and kill the session when waiting long enough
because no feedback/ping messages can be sent while the slot is still
being created.
Introduce the notion that last_reply_timestamp = 0 means that the
walsender currently doesn't need timeout processing to avoid that
problem. Use that notion for CREATE_REPLICATION_SLOT ... LOGICAL.
Bugreport and initial patch by Steve Singer, revised by me.
On clean shutdown, walsender waits for all WAL to be replicated to a standby,
and exits. It determined whether that replication had been completed by
checking whether its sent location had been equal to a standby's flush
location. Unfortunately this condition never becomes true when the standby
such as pg_receivexlog which always returns an invalid flush location is
connecting to walsender, and then walsender waits forever.
This commit changes walsender so that it just checks a standby's write
location if a flush location is invalid.
Back-patch to 9.1 where enough infrastructure for this exists.
In order for this to work, walsenders need the optional ability to
connect to a database, so the "replication" keyword now allows true
or false, for backward-compatibility, and the new value "database"
(which causes the "dbname" parameter to be respected).
walsender needs to loop not only when idle but also when sending
decoded data to the user and when waiting for more xlog data to decode.
This means that there are now three separate loops inside walsender.c;
although some refactoring has been done here, this is still a bit ugly.
Andres Freund, with contributions from Álvaro Herrera, and further
review by me.
If walsender doesn't hear from the client for the time specified by
wal_sender_timeout, it will conclude the connection or client is dead, and
disconnect. When half of wal_sender_timeout has elapsed, it sends a ping
to the client, leaving it the remainig half of wal_sender_timeout to
respond. However, it only checked if half of wal_sender_timeout had elapsed
when it was about to sleep, so if it was busy sending WAL to the client for
long enough, it would not send the ping request in time. Then the client
would not know it needs to send a reply, and the walsender will disconnect
even though the client is still alive. Fix that.
Andres Freund, reviewed by Robert Haas, and some further changes by me.
Backpatch to 9.3. Earlier versions relied on the client to send the
keepalives on its own, and hence didn't have this problem.
I changed the loop in 9.3 to use "goto send_failure" instead of "break" on
errors, but I missed this one case. It was a relatively harmless bug: if
the flush fails once it will most likely fail again as soon as we try to
flush the output again. But it's a bug nevertheless.
Report and fix by Andres Freund.
This feature, building on previous commits, allows the write-ahead log
stream to be decoded into a series of logical changes; that is,
inserts, updates, and deletes and the transactions which contain them.
It is capable of handling decoding even across changes to the schema
of the effected tables. The output format is controlled by a
so-called "output plugin"; an example is included. To make use of
this in a real replication system, the output plugin will need to be
modified to produce output in the format appropriate to that system,
and to perform filtering.
Currently, information can be extracted from the logical decoding
system only via SQL; future commits will add the ability to stream
changes via walsender.
Andres Freund, with review and other contributions from many other
people, including Álvaro Herrera, Abhijit Menon-Sen, Peter Gheogegan,
Kevin Grittner, Robert Haas, Heikki Linnakangas, Fujii Masao, Abhijit
Menon-Sen, Michael Paquier, Simon Riggs, Craig Ringer, and Steve
Singer.
WalSndKill was doing things exactly backwards: it should first clear
MyWalSnd (to stop signal handlers from touching MyWalSnd->latch),
then disown the latch, and only then mark the WalSnd struct unused by
clearing its pid field.
Also, WalRcvSigUsr1Handler and worker_spi_sighup failed to preserve
errno, which is surely a requirement for any signal handler.
Per discussion of recent buildfarm failures. Back-patch as far
as the relevant code exists.
Replication slots are a crash-safe data structure which can be created
on either a master or a standby to prevent premature removal of
write-ahead log segments needed by a standby, as well as (with
hot_standby_feedback=on) pruning of tuples whose removal would cause
replication conflicts. Slots have some advantages over existing
techniques, as explained in the documentation.
In a few places, we refer to the type of replication slots introduced
by this patch as "physical" slots, because forthcoming patches for
logical decoding will also have slots, but with somewhat different
properties.
Andres Freund and Robert Haas
In replication, when we shutdown the master, walsender tries to send
all the outstanding WAL records to the standby, and then to exit. This
basically means that all the WAL records are fully synced between
two servers after the clean shutdown of the master. So, after
promoting the standby to new master, we can restart the stopped
master as new standby without the need for a fresh backup from
new master.
But there was one problem so far: though walsender tries to send all
the outstanding WAL records, it doesn't wait for them to be replicated
to the standby. Then, before receiving all the WAL records,
walreceiver can detect the closure of connection and exit. We cannot
guarantee that there is no missing WAL in the standby after clean
shutdown of the master. In this case, backup from new master is
required when restarting the stopped master as new standby.
This patch fixes this problem. It just changes walsender so that it
waits for all the outstanding WAL records to be replicated to the
standby before closing the replication connection.
Per discussion, this is a fix that needs to get backpatched rather than
new feature. So, back-patch to 9.1 where enough infrastructure for
this exists.
Patch by me, reviewed by Andres Freund.
If a standby server has a cascading standby server connected to it, it's
possible that WAL has already been sent up to the next WAL page boundary,
splitting a WAL record in the middle, when the first standby server is
promoted. Don't throw an assertion failure or error in walsender if that
happens.
Also, fix a variant of the same bug in pg_receivexlog: if it had already
received WAL on previous timeline up to a segment boundary, when the
upstream standby server is promoted so that the timeline switch record falls
on the previous segment, pg_receivexlog would miss the segment containing
the timeline switch. To fix that, have walsender send the position of the
timeline switch at end-of-streaming, in addition to the next timeline's ID.
It was previously assumed that the switch happened exactly where the
streaming stopped.
Note: this is an incompatible change in the streaming protocol. You might
get an error if you try to stream over timeline switches, if the client is
running 9.3beta1 and the server is more recent. It should be fine after a
reconnect, however.
Reported by Fujii Masao.
We had two copies of this function in the backend and libpq, which was
already pretty bogus, but it turns out that we need it in some other
programs that don't use libpq (such as pg_test_fsync). So put it where
it probably should have been all along. The signal-mask-initialization
support in src/backend/libpq/pqsignal.c stays where it is, though, since
we only need that in the backend.
In copy-out mode, the frontend should not send any messages until the
backend has finished streaming, by sending a CopyDone message. I'm not sure
if it would be legal for the client to send a new query before receiving the
CopyDone message from the backend, but trying to support that would require
bigger changes to the backend code structure.
Fixes an assertion failure reported by Fujii Masao.
When a standby server follows the master using WAL archive, and it chooses
a new timeline (recovery_target_timeline='latest'), it only fetches the
timeline history file for the chosen target timeline, not any other history
files that might be missing from pg_xlog. For example, if the current
timeline is 2, and we choose 4 as the new recovery target timeline, the
history file for timeline 3 is not fetched, even if it's part of this
server's history. That's enough for the standby itself - the history file
for timeline 4 includes timeline 3 as well - but if a cascading standby
server wants to recover to timeline 3, it needs the history file. To fix,
when a new recovery target timeline is chosen, try to copy any missing
history files from the archive to pg_xlog between the old and new target
timeline.
A second similar issue was with the WAL files. When a standby recovers from
archive, and it reaches a segment that contains a switch to a new timeline,
recovery fetches only the WAL file labelled with the new timeline's ID. The
file from the new timeline contains a copy of the WAL from the old timeline
up to the point where the switch happened, and recovery recovers it from the
new file. But in streaming replication, walsender only tries to read it
from the old timeline's file. To fix, change walsender to read it from the
new file, so that it behaves the same as recovery in that sense, and doesn't
try to open the possibly nonexistent file with the old timeline's ID.
This mirrors the changes done earlier to the server in standby mode. When
receivelog reaches the end of a timeline, as reported by the server, it
fetches the timeline history file of the next timeline, and restarts
streaming from the new timeline by issuing a new START_STREAMING command.
When pg_receivexlog crosses a timeline, it leaves the .partial suffix on the
last segment on the old timeline. This helps you to tell apart a partial
segment left in the directory because of a timeline switch, and a completed
segment. If you just follow a single server, it won't make a difference, but
it can be significant in more complicated scenarios where new WAL is still
generated on the old timeline.
This includes two small changes to the streaming replication protocol:
First, when you reach the end of timeline while streaming, the server now
sends the TLI of the next timeline in the server's history to the client.
pg_receivexlog uses that as the next timeline, so that it doesn't need to
parse the timeline history file like a standby server does. Second, when
BASE_BACKUP command sends the begin and end WAL positions, it now also sends
the timeline IDs corresponding the positions.
Because the return value of lseek() was assigned to an unsigned size_t
variable, we'd fail to notice an error return code -1. Compiler gave a
warning about this.
Andres Freund
If you take a base backup from a standby server with "pg_basebackup -X
fetch", and the timeline switches while the backup is being taken, the
backup used to fail with an error "requested WAL segment %s has already
been removed". This is because the server-side code that sends over the
required WAL files would not construct the WAL filename with the correct
timeline after a switch.
Fix that by using readdir() to scan pg_xlog for all the WAL segments in the
range, regardless of timeline.
Also, include all timeline history files in the backup, if taken with
"-X fetch". That fixes another related bug: If a timeline switch happened
just before the backup was initiated in a standby, the WAL segment
containing the initial checkpoint record contains WAL from the older
timeline too. Recovery will not accept that without a timeline history file
that lists the older timeline.
Backpatch to 9.2. Versions prior to that were not affected as you could not
take a base backup from a standby before 9.2.
This gets rid of XLByteLT, XLByteLE, XLByteEQ and XLByteAdvance.
These were useful for brevity when XLogRecPtrs were split in
xlogid/xrecoff; but now that they are simple uint64's, they are just
clutter. The only downside to making this change would be ease of
backporting patches, but that has been negated by other substantive
changes to the involved code anyway. The clarity of simpler expressions
makes the change worthwhile.
Most of the changes are mechanical, but in a couple of places, the patch
author chose to invert the operator sense, making the code flow more
logical (and more in line with preceding comments).
Author: Andres Freund
Eyeballed by Dimitri Fontaine and Alvaro Herrera
Here's another attempt at fixing the logic that decides how far the WAL can
be streamed, which was still broken if the timeline changed while streaming.
You would get an assertion failure. The way the logic is now written is more
readable, too.
Thom Brown reported the assertion failure.
Most of the time, the last replayed record comes from the recovery target
timeline, but there is a corner case where it makes a difference. When
the startup process scans for a new timeline, and decides to change recovery
target timeline, there is a window where the recovery target TLI has already
been bumped, but there are no WAL segments from the new timeline in pg_xlog
yet. For example, if we have just replayed up to point 0/30002D8, on
timeline 1, there is a WAL file called 000000010000000000000003 in pg_xlog
that contains the WAL up to that point. When recovery switches recovery
target timeline to 2, a walsender can immediately try to read WAL from
0/30002D8, from timeline 2, so it will try to open WAL file
000000020000000000000003. However, that doesn't exist yet - the startup
process hasn't copied that file from the archive yet nor has the walreceiver
streamed it yet, so walsender fails with error "requested WAL segment
000000020000000000000003 has already been removed". That's harmless, in that
the standby will try to reconnect later and by that time the segment is
already created, but error messages that should be ignored are not good.
To fix that, have walsender track the TLI of the last replayed record,
instead of the recovery target timeline. That way walsender will not try to
read anything from timeline 2, until the WAL segment has been created and at
least one record has been replayed from it. The recovery target timeline is
now xlog.c's internal affair, it doesn't need to be exposed in shared memory
anymore.
This fixes the error reported by Thom Brown. depesz the same error message,
but I'm not sure if this fixes his scenario.
Before this patch, streaming replication would refuse to start replicating
if the timeline in the primary doesn't exactly match the standby. The
situation where it doesn't match is when you have a master, and two
standbys, and you promote one of the standbys to become new master.
Promoting bumps up the timeline ID, and after that bump, the other standby
would refuse to continue.
There's significantly more timeline related logic in streaming replication
now. First of all, when a standby connects to primary, it will ask the
primary for any timeline history files that are missing from the standby.
The missing files are sent using a new replication command TIMELINE_HISTORY,
and stored in standby's pg_xlog directory. Using the timeline history files,
the standby can follow the latest timeline present in the primary
(recovery_target_timeline='latest'), just as it can follow new timelines
appearing in an archive directory.
START_REPLICATION now takes a TIMELINE parameter, to specify exactly which
timeline to stream WAL from. This allows the standby to request the primary
to send over WAL that precedes the promotion. The replication protocol is
changed slightly (in a backwards-compatible way although there's little hope
of streaming replication working across major versions anyway), to allow
replication to stop when the end of timeline reached, putting the walsender
back into accepting a replication command.
Many thanks to Amit Kapila for testing and reviewing various versions of
this patch.
We used to send structs wrapped in CopyData messages, which works as long as
the client and server agree on things like endianess, timestamp format and
alignment. That's good enough for running a standby server, which has to run
on the same platform anyway, but it's useful for tools like pg_receivexlog
to work across platforms.
This breaks protocol compatibility of streaming replication, but we never
promised that to be compatible across versions, anyway.
Rename replication_timeout to wal_sender_timeout, and add a new setting
called wal_receiver_timeout that does the same at the walreceiver side.
There was previously no timeout in walreceiver, so if the network went down,
for example, the walreceiver could take a long time to notice that the
connection was lost. Now with the two settings, both sides of a replication
connection will detect a broken connection similarly.
It is no longer necessary to manually set wal_receiver_status_interval to
a value smaller than the timeout. Both wal sender and receiver now
automatically send a "ping" message if more than 1/2 of the configured
timeout has elapsed, and it hasn't received any messages from the other end.
Amit Kapila, heavily edited by me.