This patch forces the use of 'DROP VIEW' to destroy views.
It also changes the syntax of DROP VIEW to
DROP VIEW v1, v2, ...
to match the syntax of DROP TABLE.
Some error messages were changed so this patch also includes changes to the
appropriate expected/*.out files.
Doc changes for 'DROP TABLE" and 'DROP VIEW' are included.
--
Mark Hollomon
took some rejiggering of typename and ACL parsing, as well as moving
parse_analyze call out of parser(). Restructure postgres.c processing
so that parse analysis and rewrite are skipped when in abort-transaction
state. Only COMMIT and ABORT statements will be processed beyond the raw
parser() phase. This addresses problem of parser failing with database access
errors while in aborted state (see pghackers discussions around 7/28/00).
Also fix some bugs with COMMIT/ABORT statements appearing in the middle of
a single query input string.
Function, operator, and aggregate arguments/results can now use full
TypeName production, in particular foo[] for array types.
DROP OPERATOR and COMMENT ON OPERATOR were broken for unary operators.
Allow CREATE AGGREGATE to accept unquoted numeric constants for initcond.
SQL92 semantics, including support for ALL option. All three can be used
in subqueries and views. DISTINCT and ORDER BY work now in views, too.
This rewrite fixes many problems with cross-datatype UNIONs and INSERT/SELECT
where the SELECT yields different datatypes than the INSERT needs. I did
that by making UNION subqueries and SELECT in INSERT be treated like
subselects-in-FROM, thereby allowing an extra level of targetlist where the
datatype conversions can be inserted safely.
INITDB NEEDED!
(Don't forget that an alias is required.) Views reimplemented as expanding
to subselect-in-FROM. Grouping, aggregates, DISTINCT in views actually
work now (he says optimistically). No UNION support in subselects/views
yet, but I have some ideas about that. Rule-related permissions checking
moved out of rewriter and into executor.
INITDB REQUIRED!
including utility statements. Still can't copy or compare executor
state, but at present that doesn't seem to be necessary. This makes
it possible to execute most (all?) utility statements in plpgsql.
Had to change parsetree representation of CreateTrigStmt so that it
contained only legal Nodes, and not bare string constants.
from Param nodes, per discussion a few days ago on pghackers. Add new
expression node type FieldSelect that implements the functionality where
it's actually needed. Clean up some other unused fields in Func nodes
as well.
NOTE: initdb forced due to change in stored expression trees for rules.
There's now only one transition value and transition function.
NULL handling in aggregates is a lot cleaner. Also, use Numeric
accumulators instead of integer accumulators for sum/avg on integer
datatypes --- this avoids overflow at the cost of being a little slower.
Implement VARIANCE() and STDDEV() aggregates in the standard backend.
Also, enable new LIKE selectivity estimators by default. Unrelated
change, but as long as I had to force initdb anyway...
memory contexts. Currently, only leaks in expressions executed as
quals or projections are handled. Clean up some old dead cruft in
executor while at it --- unused fields in state nodes, that sort of thing.
in copyfuncs and equalfuncs exposed by regression tests. We still have
some work to do: these modules really ought to handle most or all of
the utility statement node types. But it's better than it was.
materialized tupleset is small enough) instead of a temporary relation.
This was something I was thinking of doing anyway for performance, and Jan
says he needs it for TOAST because he doesn't want to cope with toasting
noname relations. With this change, the 'noname table' support in heap.c
is dead code, and I have accordingly removed it. Also clean up 'noname'
plan handling in planner --- nonames are either sort or materialize plans,
and it seems less confusing to handle them separately under those names.
parse node types. This allows these statements to be placed in a plpgsql
function. Also, see to it that statement types not handled by the copy
logic will draw an appropriate elog(ERROR), instead of leaving a null
pointer that will cause coredump later on. More utility statements could
be added if anyone felt like turning the crank.
WHERE in a place where it can be part of a nestloop inner indexqual.
As the code stood, it put the same physical sub-Plan node into both
indxqual and indxqualorig of the IndexScan plan node. That confused
later processing in the optimizer (which expected that tracing the
subPlan list would visit each subplan node exactly once), and would
probably have blown up in the executor if the planner hadn't choked first.
Fix by making the 'fixed' indexqual be a complete deep copy of the
original indexqual, rather than trying to share nodes below the topmost
operator node. This had further ramifications though, because we were
making the aforesaid list of sub-Plan nodes during SS_process_sublinks
which is run before construction of the 'fixed' indexqual, meaning that
the copy of the sub-Plan didn't show up in that list. Fix by rearranging
logic so that the sub-Plan list is built by the final set_plan_references
pass, not in SS_process_sublinks. This may sound like a mess, but it's
actually a good deal cleaner now than it was before, because we are no
longer dependent on the assumption that planning will never make a copy
of a sub-Plan node.
costs using the inner path's parent->rows count as the number of tuples
processed per inner scan iteration. This is wrong when we are using an
inner indexscan with indexquals based on join clauses, because the rows
count in a Relation node reflects the selectivity of the restriction
clauses for that rel only. Upshot was that if join clause was very
selective, we'd drastically overestimate the true cost of the join.
Fix is to calculate correct output-rows estimate for an inner indexscan
when the IndexPath node is created and save it in the path node.
Change of path node doesn't require initdb, since path nodes don't
appear in saved rules.
Implement TIME WITH TIME ZONE type (timetz internal type).
Remap length() for character strings to CHAR_LENGTH() for SQL92
and to remove the ambiguity with geometric length() functions.
Keep length() for character strings for backward compatibility.
Shrink stored views by removing internal column name list from visible rte.
Implement min(), max() for time and timetz data types.
Implement conversion of TIME to INTERVAL.
Implement abs(), mod(), fac() for the int8 data type.
Rename some math functions to generic names:
round(), sqrt(), cbrt(), pow(), etc.
Rename NUMERIC power() function to pow().
Fix int2 factorial to calculate result in int4.
Enhance the Oracle compatibility function translate() to work with string
arguments (from Edwin Ramirez).
Modify pg_proc system table to remove OID holes.
integers) to be strings instead of 'double'. We convert from string form
to internal representation only after type resolution has determined the
correct type for the constant. This eliminates loss-of-precision worries
and gets rid of the change in behavior seen at 17 digits with the
previous kluge.
represent the result of a binary-compatible type coercion. At runtime
it just evaluates its argument --- but during type resolution, exprType
will pick up the output type of the RelabelType node instead of the type
of the argument. This solves some longstanding problems with dropped
type coercions, an example being 'select now()::abstime::int4' which
used to produce date-formatted output, not an integer, because the
coercion to int4 was dropped on the floor.
accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions. Export critical parameters for this model as SET
variables. Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.
Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.
Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.
Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.
Initdb forced by change in interface to index cost estimation
functions.
SELECT a FROM t1 tx (a);
Allow join syntax, including queries like
SELECT * FROM t1 NATURAL JOIN t2;
Update RTE structure to hold column aliases in an Attr structure.
fields in JoinPaths --- turns out that we do need that after all :-(.
Also, rearrange planner so that only one RelOptInfo is created for a
particular set of joined base relations, no matter how many different
subsets of relations it can be created from. This saves memory and
processing time compared to the old method of making a bunch of RelOptInfos
and then removing the duplicates. Clean up the jointree iteration logic;
not sure if it's better, but I sure find it more readable and plausible
now, particularly for the case of 'bushy plans'.
SELECT DISTINCT ON (expr [, expr ...]) targetlist ...
and there is a check to make sure that the user didn't specify an ORDER BY
that's incompatible with the DISTINCT operation.
Reimplement nodeUnique and nodeGroup to use the proper datatype-specific
equality function for each column being compared --- they used to do
bitwise comparisons or convert the data to text strings and strcmp().
(To add insult to injury, they'd look up the conversion functions once
for each tuple...) Parse/plan representation of DISTINCT is now a list
of SortClause nodes.
initdb forced by querytree change...
pghackers discussion of 5-Jan-2000. The amopselect and amopnpages
estimators are gone, and in their place is a per-AM amcostestimate
procedure (linked to from pg_am, not pg_amop).
SQL cast constructs can be performed during expression transformation
instead of during parsing. This allows constructs like x::numeric(9,2)
and x::int2::float8 to behave as one would expect.
subselects can only appear on the righthand side of a binary operator.
That's still true for quantified predicates like x = ANY (SELECT ...),
but a subselect that delivers a single result can now appear anywhere
in an expression. This is implemented by changing EXPR_SUBLINK sublinks
to represent just the (SELECT ...) expression, without any 'left hand
side' or combining operator --- so they're now more like EXISTS_SUBLINK.
To handle the case of '(x, y, z) = (SELECT ...)', I added a new sublink
type MULTIEXPR_SUBLINK, which acts just like EXPR_SUBLINK used to.
But the grammar will only generate one for a multiple-left-hand-side
row expression.
Apparently, back in the dim reaches of prehistory, the parser couldn't
be trusted to label Const nodes with the correct constbyval value ...
and someone preferred to patch around this in copyObject rather than
fix the problem at the source. The problem is long gone, but the hack
lingered on. Until now.
mentioned in FROM but not elsewhere in the query: such tables should be
joined over anyway. Aside from being more standards-compliant, this allows
removal of some very ugly hacks for COUNT(*) processing. Also, allow
HAVING clause without aggregate functions, since SQL does. Clean up
CREATE RULE statement-list syntax the same way Bruce just fixed the
main stmtmulti production.
CAUTION: addition of a field to RangeTblEntry nodes breaks stored rules;
you will have to initdb if you have any rules.
sort order down into planner, instead of handling it only at the very top
level of the planner. This fixes many things. An explicit sort is now
avoided if there is a cheaper alternative (typically an indexscan) not
only for ORDER BY, but also for the internal sort of GROUP BY. It works
even when there is no other reason (such as a WHERE condition) to consider
the indexscan. It works for indexes on functions. It works for indexes
on functions, backwards. It's just so cool...
CAUTION: I have changed the representation of SortClause nodes, therefore
THIS UPDATE BREAKS STORED RULES. You will need to initdb.
store all ordering information in pathkeys lists (which are now lists of
lists of PathKeyItem nodes, not just lists of lists of vars). This was
a big win --- the code is smaller and IMHO more understandable than it
was, even though it handles more cases. I believe the node changes will
not force an initdb for anyone; planner nodes don't show up in stored
rules.
> >
> > was implemented by Jan Wieck.
> > His work is for ascending order cases.
> >
> > Here is a patch to prevent sorting also in descending
> > order cases.
> > Because I had already changed _bt_first() to position
> > backward correctly before v6.5,this patch would work.
> >
Hiroshi Inoue
Inoue@tpf.co.jp
optimizer rather than parser. This has many advantages, such as not
getting fooled by chance uses of operator names ~ and ~~ (the operators
are identified by OID now), and not creating useless comparison operations
in contexts where the comparisons will not actually be used as indexquals.
The new code also recognizes exact-match LIKE and regex patterns, and
produces an = indexqual instead of >= and <=.
This change does NOT fix the problem with non-ASCII locales: the code
still doesn't know how to generate an upper bound indexqual for non-ASCII
collation order. But it's no worse than before, just the same deficiency
in a different place...
Also, dike out loc_restrictinfo fields in Plan nodes. These were doing
nothing useful in the absence of 'expensive functions' optimization,
and they took a considerable amount of processing to fill in.
The only place it was being used was as temporary storage in indxpath.c,
and the logic was wrong: the same restrictinfo node could get chosen to
carry the info for two different joins. Right fix is to return a second
list of unjoined-relids parallel to the list of clause groups.
identified by Hiroshi (incorrect cost attributed to OR clauses
after multiple passes through set_rest_selec()). I think the code
was trying to allow selectivities of OR subclauses to be passed in
from outside, but noplace was actually passing any useful data, and
set_rest_selec() was passing wrong data.
Restructure representation of "indexqual" in IndexPath nodes so that
it is the same as for indxqual in completed IndexScan nodes: namely,
a toplevel list with an entry for each pass of the index scan, having
sublists that are implicitly-ANDed index qual conditions for that pass.
You don't want to know what the old representation was :-(
Improve documentation of OR-clause indexscan functions.
Remove useless 'notclause' field from RestrictInfo nodes. (This might
force an initdb for anyone who has stored rules containing RestrictInfos,
but I do not think that RestrictInfo ever appears in completed plans.)