To ensure that the errors of executing a JsonBehavior expression that
is coerced in the parser are caught instead of being thrown directly,
pass ErrorSaveContext to ExecInitExprRec() when initializing it.
Also, add a EEOP_JSONEXPR_COERCION_FINISH step to handle the errors
that are caught that way.
Discussion: https://postgr.es/m/CACJufxEo4sUjKCYtda0_qt9tazqqKPmF1cqhW9KBOUeJFqQd2g@mail.gmail.com
Backpatch-through: 17
Instead of looking up casts at parse time for converting the result
of JsonPath* query functions to the specified or the default
RETURNING type, always perform the conversion at runtime using either
the target type's input function or the function
json_populate_type().
There are two motivations for this change:
1. json_populate_type() coerces to types with typmod such that any
string values that exceed length limit cause an error instead of
silent truncation, which is necessary to be standard-conforming.
2. It was possible to end up with a cast expression that doesn't
support soft handling of errors causing bugs in the of handling
ON ERROR clause.
JsonExpr.coercion_expr which would store the cast expression is no
longer necessary, so remove.
Bump catversion because stored rules change because of the above
removal.
Reported-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Jian He <jian.universality@gmail.com>
Discussion: Discussion: https://postgr.es/m/202405271326.5a5rprki64aw%40alvherre.pgsql
This improves some error messages emitted by SQL/JSON query functions
by mentioning column name when available, such as when they are
invoked as part of evaluating JSON_TABLE() columns. To do so, a new
field column_name is added to both JsonFuncExpr and JsonExpr that is
only populated when creating those nodes for transformed JSON_TABLE()
columns.
While at it, relevant error messages are reworded for clarity.
Reported-by: Jian He <jian.universality@gmail.com>
Suggested-by: Jian He <jian.universality@gmail.com>
Discussion: https://postgr.es/m/CACJufxG_e0QLCgaELrr2ZNz7AxPeGCNKAORe3fHtFCQLsH4J4Q@mail.gmail.com
JSON_TABLE() allows JSON data to be converted into a relational view
and thus used, for example, in a FROM clause, like other tabular
data. Data to show in the view is selected from a source JSON object
using a JSON path expression to get a sequence of JSON objects that's
called a "row pattern", which becomes the source to compute the
SQL/JSON values that populate the view's output columns. Column
values themselves are computed using JSON path expressions applied to
each of the JSON objects comprising the "row pattern", for which the
SQL/JSON query functions added in 6185c9737cf4 are used.
To implement JSON_TABLE() as a table function, this augments the
TableFunc and TableFuncScanState nodes that are currently used to
support XMLTABLE() with some JSON_TABLE()-specific fields.
Note that the JSON_TABLE() spec includes NESTED COLUMNS and PLAN
clauses, which are required to provide more flexibility to extract
data out of nested JSON objects, but they are not implemented here
to keep this commit of manageable size.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Jian He <jian.universality@gmail.com>
Reviewers have included (in no particular order):
Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup,
Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby, Álvaro Herrera, Jian He
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
This introduces the following SQL/JSON functions for querying JSON
data using jsonpath expressions:
JSON_EXISTS(), which can be used to apply a jsonpath expression to a
JSON value to check if it yields any values.
JSON_QUERY(), which can be used to to apply a jsonpath expression to
a JSON value to get a JSON object, an array, or a string. There are
various options to control whether multi-value result uses array
wrappers and whether the singleton scalar strings are quoted or not.
JSON_VALUE(), which can be used to apply a jsonpath expression to a
JSON value to return a single scalar value, producing an error if it
multiple values are matched.
Both JSON_VALUE() and JSON_QUERY() functions have options for
handling EMPTY and ERROR conditions, which can be used to specify
the behavior when no values are matched and when an error occurs
during jsonpath evaluation, respectively.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Peter Eisentraut <peter@eisentraut.org>
Author: Jian He <jian.universality@gmail.com>
Reviewers have included (in no particular order):
Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup,
Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby, Álvaro Herrera, Jian He, Anton A. Melnikov,
Nikita Malakhov, Peter Eisentraut, Tomas Vondra
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
This allows a RETURNING clause to be appended to a MERGE query, to
return values based on each row inserted, updated, or deleted. As with
plain INSERT, UPDATE, and DELETE commands, the returned values are
based on the new contents of the target table for INSERT and UPDATE
actions, and on its old contents for DELETE actions. Values from the
source relation may also be returned.
As with INSERT/UPDATE/DELETE, the output of MERGE ... RETURNING may be
used as the source relation for other operations such as WITH queries
and COPY commands.
Additionally, a special function merge_action() is provided, which
returns 'INSERT', 'UPDATE', or 'DELETE', depending on the action
executed for each row. The merge_action() function can be used
anywhere in the RETURNING list, including in arbitrary expressions and
subqueries, but it is an error to use it anywhere outside of a MERGE
query's RETURNING list.
Dean Rasheed, reviewed by Isaac Morland, Vik Fearing, Alvaro Herrera,
Gurjeet Singh, Jian He, Jeff Davis, Merlin Moncure, Peter Eisentraut,
and Wolfgang Walther.
Discussion: http://postgr.es/m/CAEZATCWePEGQR5LBn-vD6SfeLZafzEm2Qy_L_Oky2=qw2w3Pzg@mail.gmail.com
as determined by include-what-you-use (IWYU)
While IWYU also suggests to *add* a bunch of #include's (which is its
main purpose), this patch does not do that. In some cases, a more
specific #include replaces another less specific one.
Some manual adjustments of the automatic result:
- IWYU currently doesn't know about includes that provide global
variable declarations (like -Wmissing-variable-declarations), so
those includes are being kept manually.
- All includes for port(ability) headers are being kept for now, to
play it safe.
- No changes of catalog/pg_foo.h to catalog/pg_foo_d.h, to keep the
patch from exploding in size.
Note that this patch touches just *.c files, so nothing declared in
header files changes in hidden ways.
As a small example, in src/backend/access/transam/rmgr.c, some IWYU
pragma annotations are added to handle a special case there.
Discussion: https://www.postgresql.org/message-id/flat/af837490-6b2f-46df-ba05-37ea6a6653fc%40eisentraut.org
This adjusts the code for CoerceViaIO and CoerceToDomain expression
nodes to handle errors softly.
For CoerceViaIo, this adds a new ExprEvalStep opcode
EEOP_IOCOERCE_SAFE, which is implemented in the new accompanying
function ExecEvalCoerceViaIOSafe(). The only difference from
EEOP_IOCOERCE's inline implementation is that the input function
receives an ErrorSaveContext via the function's
FunctionCallInfo.context, which it can use to handle errors softly.
For CoerceToDomain, this simply entails replacing the ereport() in
ExecEvalConstraintNotNull() and ExecEvalConstraintCheck() by
errsave() passing it the ErrorSaveContext passed in the expression's
ExprEvalStep.
In both cases, the ErrorSaveContext to be used is passed by setting
ExprState.escontext to point to it before calling ExecInitExprRec()
on the expression tree whose errors are to be handled softly.
Note that there's no functional change as of this commit as no call
site of ExecInitExprRec() has been changed. This is intended for
implementing new SQL/JSON expression nodes in future commits.
Extracted from a much larger patch to add SQL/JSON query functions.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund,
Alexander Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers,
Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby,
Álvaro Herrera, Jian He, Peter Eisentraut
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
1349d2790 added code to allow DISTINCT and ORDER BY aggregates to work
more efficiently by using presorted input. That commit added some code
that made use of the AggState's tmpcontext and adjusted the
ecxt_outertuple and ecxt_innertuple slots before checking if the current
row is distinct from the previously seen row. That code forgot to set the
TupleTableSlots back to what they were originally, which could result in
errors such as:
ERROR: attribute 1 of type record has wrong type
This only affects aggregate functions which have multiple arguments when
DISTINCT is used. For example: string_agg(DISTINCT col, ', ')
Thanks to Tom Lane for identifying the breaking commit.
Bug: #18264
Reported-by: Vojtěch Beneš
Discussion: https://postgr.es/m/18264-e363593d7e9feb7d@postgresql.org
Backpatch-through: 16, where 1349d2790 was added
This adjusts the expression evaluation code for CoerceViaIO and
CoerceToDomain to handle errors softly if needed.
For CoerceViaIo, this means using InputFunctionCallSafe(), which
provides the option to handle errors softly, instead of calling the
type input function directly.
For CoerceToDomain, this simply entails replacing the ereport() in
ExecEvalConstraintCheck() by errsave().
In both cases, the ErrorSaveContext to be used when evaluating the
expression is stored by ExecInitExprRec() in the expression's struct
in the expression's ExprEvalStep. The ErrorSaveContext is passed by
setting ExprState.escontext to point to it when calling
ExecInitExprRec() on the expression whose errors are to be handled
softly.
Note that no call site of ExecInitExprRec() has been changed in this
commit, so there's no functional change. This is intended for
implementing new SQL/JSON expression nodes in future commits that
will use to it suppress errors that may occur during type coercions.
Reviewed-by: Álvaro Herrera
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
This Patch introduces three SQL standard JSON functions:
JSON()
JSON_SCALAR()
JSON_SERIALIZE()
JSON() produces json values from text, bytea, json or jsonb values,
and has facilitites for handling duplicate keys.
JSON_SCALAR() produces a json value from any scalar sql value,
including json and jsonb.
JSON_SERIALIZE() produces text or bytea from input which containis
or represents json or jsonb;
For the most part these functions don't add any significant new
capabilities, but they will be of use to users wanting standard
compliant JSON handling.
Catversion bumped as this changes ruleutils.c.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby, Álvaro Herrera,
Peter Eisentraut
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
If the given composite datum is toasted out-of-line,
DatumGetHeapTupleHeader will perform database accesses to detoast it.
That can invalidate the result of get_cached_rowtype, as documented
(perhaps not plainly enough) in that function's API spec; which leads
to strange errors or crashes when we try to use the TupleDesc to read
the tuple. In short then, trying to update a field of a composite
column could fail intermittently if the overall column value is wide
enough to require toasting.
We can fix the bug at no cost by just changing the order of
operations, since we don't need the TupleDesc until after detoasting.
(Other callers of get_cached_rowtype appear to get this right already,
so there's only one bug.)
Note that the added regression test case reveals this bug reliably
only with debug_discard_caches/CLOBBER_CACHE_ALWAYS.
Per bug #17994 from Alexander Lakhin. Sadly, this patch does not fix
the missing-values issue revealed in the bug discussion; we'll need
some more work to cover that.
Discussion: https://postgr.es/m/17994-5c7100b51b4790e9@postgresql.org
Run pgindent, pgperltidy, and reformat-dat-files.
This set of diffs is a bit larger than typical. We've updated to
pg_bsd_indent 2.1.2, which properly indents variable declarations that
have multi-line initialization expressions (the continuation lines are
now indented one tab stop). We've also updated to perltidy version
20230309 and changed some of its settings, which reduces its desire to
add whitespace to lines to make assignments etc. line up. Going
forward, that should make for fewer random-seeming changes to existing
code.
Discussion: https://postgr.es/m/20230428092545.qfb3y5wcu4cm75ur@alvherre.pgsql
This is equivalent to a revert of f193883 and fb32748, with the addition
that the declaration of the SQLValueFunction node needs to gain a couple
of node_attr for query jumbling. The performance impact of removing the
function call inlining is proving to be too huge for some workloads
where these are used. A worst-case test case of involving only simple
SELECT queries with a SQL keyword is proving to lead to a reduction of
10% in TPS via pgbench and prepared queries on a high-end machine.
None of the tests I ran back for this set of changes saw such a huge
gap, but Alexander Lakhin and Andres Freund have found that this can be
noticeable. Keeping the older performance would mean to do more
inlining in the executor when using COERCE_SQL_SYNTAX for a function
expression, similarly to what SQLValueFunction does. This requires more
redesign work and there is little time until 16beta1 is released, so for
now reverting the change is the best way forward, bringing back the
previous performance.
Bump catalog version.
Reported-by: Alexander Lakhin
Discussion: https://postgr.es/m/b32bed1b-0746-9b20-1472-4bdc9ca66d52@gmail.com
The name of this function suggests that it ought to reparent R/W
expanded objects to be children of the persistent aggcontext, instead
of copying them. In fact it does no such thing, and if you try to
make it do so you will see multiple regression failures. Rename it
to the less-misleading ExecAggCopyTransValue, and add commentary
about why that attractive-sounding optimization won't work. Also
adjust comments at call sites, some of which were describing logic
that has since been moved into ExecAggCopyTransValue.
Discussion: https://postgr.es/m/3004282.1681930251@sss.pgh.pa.us
This patch introduces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON, as well as on the json and
jsonb types. Each test has IS and IS NOT variants and supports a WITH
UNIQUE KEYS flag. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
These should be self-explanatory.
The WITH UNIQUE KEYS flag makes these return false when duplicate keys
exist in any object within the value, not necessarily directly contained
in the outermost object.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
This commit introduces the SQL/JSON standard-conforming constructors for
JSON types:
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
Most of the functionality was already present in PostgreSQL-specific
functions, but these include some new functionality such as the ability
to skip or include NULL values, and to allow duplicate keys or throw
error when they are found, as well as the standard specified syntax to
specify output type and format.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
The nested-arrays code path in ExecEvalArrayExpr() used palloc to
allocate the result array, whereas every other array-creating function
has used palloc0 since 18c0b4ecc. This mostly works, but unused bits
past the end of the nulls bitmap may end up undefined. That causes
valgrind complaints with -DWRITE_READ_PARSE_PLAN_TREES, and could
cause planner misbehavior as cited in 18c0b4ecc. There seems no very
good reason why we should strive to avoid palloc0 in just this one case,
so fix it the easy way with s/palloc/palloc0/.
While looking at that I noted that we also failed to check for overflow
of "nbytes" and "nitems" while summing the sizes of the sub-arrays,
potentially allowing a crash due to undersized output allocation.
For "nbytes", follow the policy used by other array-munging code of
checking for overflow after each addition. (As elsewhere, the last
addition of the array's overhead space doesn't need an extra check,
since palloc itself will catch a value between 1Gb and 2Gb.)
For "nitems", there's no very good reason to sum the inputs at all,
since we can perfectly well use ArrayGetNItems' result instead of
ignoring it.
Per discussion of this bug, also remove redundant zeroing of the
nulls bitmap in array_set_element and array_set_slice.
Patch by Alexander Lakhin and myself, per bug #17858 from Alexander
Lakhin; thanks also to Richard Guo. These bugs are a dozen years old,
so back-patch to all supported branches.
Discussion: https://postgr.es/m/17858-8fd287fd3663d051@postgresql.org
This adds the ability to pretty-print XML documents ... according to
libxml's somewhat idiosyncratic notions of what's pretty, anyway.
One notable divergence from a strict reading of the spec is that
libxml is willing to collapse empty nodes "<node></node>" to just
"<node/>", whereas SQL and the underlying XML spec say that this
option should only result in whitespace tweaks. Nonetheless,
it seems close enough to justify using the SQL-standard syntax.
Jim Jones, reviewed by Peter Smith and myself
Discussion: https://postgr.es/m/2f5df461-dad8-6d7d-4568-08e10608a69b@uni-muenster.de
The logic in this area was recently changed in 7da51590e, however, in that
commit, I neglected to consider that the conditions in which we should
pfree the old Datum needed to be updated after that change. This could
result in trying to pfree a NULL value, as was demonstrated by Alexander
Lakhin.
Reported-by: Alexander Lakhin
Discussion: https://postgr.es/m/4103db46-d888-6d1d-e88d-87c21ed99472@gmail.com
Here we fix a faulty "if" condition which failed to correctly handle two
or more consecutive NULL transition values when checking if the new value
is DISTINCT from the old value for presorted aggregates. Given a suitably
non-strict aggregate transition function, a byref aggregate could cause a
crash due to calling the type's equality function and passing along a
(Datum) 0 value to test for equality, the equality function would then try
to dereference that 0 Datum and segfault. For byval types, there'd have
been no crash and the equality function would have seen that the two 0
Datums matched, which (only by chance) meant the calling code would have
worked correctly.
Here we ensure that we only call the equality function when neither of
the input values are NULL.
This code is all new as of 1349d2790, so no backpatch needed.
Reported-by: Fujii Masao
Discussion: https://postgr.es/m/860c6d6f-a3c5-3ae9-9da2-827177bede06@oss.nttdata.com
Because we added StaticAssertStmt() first before StaticAssertDecl(),
some uses as well as the instructions in c.h are now a bit backwards
from the "native" way static assertions are meant to be used in C.
This updates the guidance and moves some static assertions to better
places.
Specifically, since the addition of StaticAssertDecl(), we can put
static assertions at the file level. This moves a number of static
assertions out of function bodies, where they might have been stuck
out of necessity, to perhaps better places at the file level or in
header files.
Also, when the static assertion appears in a position where a
declaration is allowed, then using StaticAssertDecl() is more native
than StaticAssertStmt().
Reviewed-by: John Naylor <john.naylor@enterprisedb.com>
Discussion: https://www.postgresql.org/message-id/flat/941a04e7-dd6f-c0e4-8cdf-a33b3338cbda%40enterprisedb.com
This switch impacts 9 patterns related to a SQL-mandated special syntax
for function calls:
- LOCALTIME [ ( typmod ) ]
- LOCALTIMESTAMP [ ( typmod ) ]
- CURRENT_TIME [ ( typmod ) ]
- CURRENT_TIMESTAMP [ ( typmod ) ]
- CURRENT_DATE
Five new entries are added to pg_proc to compensate the removal of
SQLValueFunction to provide backward-compatibility and making this
change transparent for the end-user (for example for the attribute
generated when a keyword is specified in a SELECT or in a FROM clause
without an alias, or when specifying something else than an Iconst to
the parser).
The parser included a set of checks coming from the files in charge of
holding the C functions used for the SQLValueFunction calls (as of
transformSQLValueFunction()), which are now moved within each function's
execution path, so this reduces the dependencies between the execution
and the parsing steps. As of this change, all the SQL keywords use the
same paths for their work, relying only on COERCE_SQL_SYNTAX. Like
fb32748, no performance difference has been noticed, while the perf
profiles get reduced with ExecEvalSQLValueFunction() gone.
Bump catalog version.
Reviewed-by: Corey Huinker, Ted Yu
Discussion: https://postgr.es/m/YzaG3MoryCguUOym@paquier.xyz
This commit changes six SQL keywords to use COERCE_SQL_SYNTAX rather
than relying on SQLValueFunction:
- CURRENT_ROLE
- CURRENT_USER
- USER
- SESSION_USER
- CURRENT_CATALOG
- CURRENT_SCHEMA
Among the six, "user", "current_role" and "current_catalog" require
specific SQL functions to allow ruleutils.c to map them to the SQL
keywords these require when using COERCE_SQL_SYNTAX. Having
pg_proc.proname match with the keyword ensures that the compatibility
remains the same when projecting any of these keywords in a FROM clause
to an attribute name when an alias is not specified. This is covered by
the tests added in 2e0d80c, making sure that a correct mapping happens
with each SQL keyword. The three others (current_schema, session_user
and current_user) already have pg_proc entries for this job, so this
brings more consistency between the way such keywords are treated in the
parser, the executor and ruleutils.c.
SQLValueFunction is reduced to half its contents after this change,
simplifying its logic a bit as there is no need to enforce a C collation
anymore for the entries returning a name as a result. I have made a few
performance tests, with a million-ish calls to these keywords without
seeing a difference in run-time or in perf profiles
(ExecEvalSQLValueFunction() is removed from the profiles). The
remaining SQLValueFunctions are now related to timestamps and dates.
Bump catalog version.
Reviewed-by: Corey Huinker
Discussion: https://postgr.es/m/YzaG3MoryCguUOym@paquier.xyz
The reverts the following and makes some associated cleanups:
commit f79b803dc: Common SQL/JSON clauses
commit f4fb45d15: SQL/JSON constructors
commit 5f0adec25: Make STRING an unreserved_keyword.
commit 33a377608: IS JSON predicate
commit 1a36bc9db: SQL/JSON query functions
commit 606948b05: SQL JSON functions
commit 49082c2cc: RETURNING clause for JSON() and JSON_SCALAR()
commit 4e34747c8: JSON_TABLE
commit fadb48b00: PLAN clauses for JSON_TABLE
commit 2ef6f11b0: Reduce running time of jsonb_sqljson test
commit 14d3f24fa: Further improve jsonb_sqljson parallel test
commit a6baa4bad: Documentation for SQL/JSON features
commit b46bcf7a4: Improve readability of SQL/JSON documentation.
commit 112fdb352: Fix finalization for json_objectagg and friends
commit fcdb35c32: Fix transformJsonBehavior
commit 4cd8717af: Improve a couple of sql/json error messages
commit f7a605f63: Small cleanups in SQL/JSON code
commit 9c3d25e17: Fix JSON_OBJECTAGG uniquefying bug
commit a79153b7a: Claim SQL standard compliance for SQL/JSON features
commit a1e7616d6: Rework SQL/JSON documentation
commit 8d9f9634e: Fix errors in copyfuncs/equalfuncs support for JSON node types.
commit 3c633f32b: Only allow returning string types or bytea from json_serialize
commit 67b26703b: expression eval: Fix EEOP_JSON_CONSTRUCTOR and EEOP_JSONEXPR size.
The release notes are also adjusted.
Backpatch to release 15.
Discussion: https://postgr.es/m/40d2c882-bcac-19a9-754d-4299e1d87ac7@postgresql.org
ORDER BY / DISTINCT aggreagtes have, since implemented in Postgres, been
executed by always performing a sort in nodeAgg.c to sort the tuples in
the current group into the correct order before calling the transition
function on the sorted tuples. This was not great as often there might be
an index that could have provided pre-sorted input and allowed the
transition functions to be called as the rows come in, rather than having
to store them in a tuplestore in order to sort them once all the tuples
for the group have arrived.
Here we change the planner so it requests a path with a sort order which
supports the most amount of ORDER BY / DISTINCT aggregate functions and
add new code to the executor to allow it to support the processing of
ORDER BY / DISTINCT aggregates where the tuples are already sorted in the
correct order.
Since there can be many ORDER BY / DISTINCT aggregates in any given query
level, it's very possible that we can't find an order that suits all of
these aggregates. The sort order that the planner chooses is simply the
one that suits the most aggregate functions. We take the most strictly
sorted variation of each order and see how many aggregate functions can
use that, then we try again with the order of the remaining aggregates to
see if another order would suit more aggregate functions. For example:
SELECT agg(a ORDER BY a),agg2(a ORDER BY a,b) ...
would request the sort order to be {a, b} because {a} is a subset of the
sort order of {a,b}, but;
SELECT agg(a ORDER BY a),agg2(a ORDER BY c) ...
would just pick a plan ordered by {a} (we give precedence to aggregates
which are earlier in the targetlist).
SELECT agg(a ORDER BY a),agg2(a ORDER BY b),agg3(a ORDER BY b) ...
would choose to order by {b} since two aggregates suit that vs just one
that requires input ordered by {a}.
Author: David Rowley
Reviewed-by: Ronan Dunklau, James Coleman, Ranier Vilela, Richard Guo, Tom Lane
Discussion: https://postgr.es/m/CAApHDvpHzfo92%3DR4W0%2BxVua3BUYCKMckWAmo-2t_KiXN-wYH%3Dw%40mail.gmail.com
A code comment said that the standard does not define a number for
ERRCODE_SQL_JSON_ITEM_CANNOT_BE_CAST_TO_TARGET_TYPE, but this was
fixed in a later draft version of the standard, so use that number
now.
50e17ad28 increased the size of ExprEvalStep from 64 bytes up to 88 bytes.
Lots of effort was spent during the development of the current expression
evaluation code to make an instance of this struct as small as possible.
Making this struct larger than needed reduces CPU cache efficiency during
expression evaluation which causes noticeable slowdowns during query
execution.
In order to reduce the size of the struct, here we remove the fn_addr
field. The values from this field can be obtained via fcinfo, just with
some extra pointer dereferencing. The extra indirection does not seem to
cause any noticeable slowdowns.
Various other fields have been moved into the ScalarArrayOpExprHashTable
struct. These fields are only used when the ScalarArrayOpExprHashTable
pointer has already been dereferenced, so no additional pointer
dereferences occur for these. Here we also make hash_fcinfo_data the last
field in ScalarArrayOpExprHashTable so that we can avoid a further pointer
dereference to get the FunctionCallInfoBaseData. This also saves a call to
palloc().
50e17ad28 was added in 14, but it's too late to adjust the size of the
ExprEvalStep in that version, so here we just backpatch to 15, which is
currently in beta.
Author: Andres Freund, David Rowley
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Backpatch-through: 15
The new expression step types increased the size of ExprEvalStep by ~4 for all
types of expression steps, slowing down expression evaluation noticeably. Move
them out of line.
There's other issues with these expression steps, but addressing them is
largely independent of this aspect.
Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Andrew Dunstan <andrew@dunslane.net>
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Backpatch: 15-
In commit ec62cb0aa, I foolishly replaced ExecEvalWholeRowVar's
lookup_rowtype_tupdesc_domain call with just lookup_rowtype_tupdesc,
because I didn't see how a domain could be involved there, and
there were no regression test cases to jog my memory. But the
existing code was correct, so revert that change and add a test
case showing why it's necessary. (Note: per comment in struct
DatumTupleFields, it is correct to produce an output tuple that's
labeled with the base composite type, not the domain; hence just
blindly looking through the domain is correct here.)
Per bug #17515 from Dan Kubb. Back-patch to v11 where domains over
composites became a thing.
Discussion: https://postgr.es/m/17515-a24737438363aca0@postgresql.org
I started out with the intention to rename value_type to item_type to
avoid a collision with a typedef name that appears on some platforms.
Along the way, I noticed that the adjacent field "format" was not being
correctly handled by the backend/nodes/ infrastructure functions:
copyfuncs.c erroneously treated it as a scalar, while equalfuncs,
outfuncs, and readfuncs omitted handling it at all. This looks like
it might be cosmetic at the moment because the field is always NULL
after parse analysis; but that's likely a bug in itself, and the code's
certainly not very future-proof. Let's fix it while we can still do so
without forcing an initdb on beta testers.
Further study found a few other inconsistencies in the backend/nodes/
infrastructure for the recently-added JSON node types, so fix those too.
catversion bumped because of potential change in stored rules.
Discussion: https://postgr.es/m/526703.1652385613@sss.pgh.pa.us
This feature allows jsonb data to be treated as a table and thus used in
a FROM clause like other tabular data. Data can be selected from the
jsonb using jsonpath expressions, and hoisted out of nested structures
in the jsonb to form multiple rows, more or less like an outer join.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zhihong Yu (whose
name I previously misspelled), Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby.
Discussion: https://postgr.es/m/7e2cb85d-24cf-4abb-30a5-1a33715959bd@postgrespro.ru
This Patch introduces three SQL standard JSON functions:
JSON() (incorrectly mentioned in my commit message for f4fb45d15c)
JSON_SCALAR()
JSON_SERIALIZE()
JSON() produces json values from text, bytea, json or jsonb values, and
has facilitites for handling duplicate keys.
JSON_SCALAR() produces a json value from any scalar sql value, including
json and jsonb.
JSON_SERIALIZE() produces text or bytea from input which containis or
represents json or jsonb;
For the most part these functions don't add any significant new
capabilities, but they will be of use to users wanting standard
compliant JSON handling.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This introduces the SQL/JSON functions for querying JSON data using
jsonpath expressions. The functions are:
JSON_EXISTS()
JSON_QUERY()
JSON_VALUE()
All of these functions only operate on jsonb. The workaround for now is
to cast the argument to jsonb.
JSON_EXISTS() tests if the jsonpath expression applied to the jsonb
value yields any values. JSON_VALUE() must return a single value, and an
error occurs if it tries to return multiple values. JSON_QUERY() must
return a json object or array, and there are various WRAPPER options for
handling scalar or multi-value results. Both these functions have
options for handling EMPTY and ERROR conditions.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This patch intrdocuces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON as well as on the json and
jsonb types. Each test has an IS and IS NOT variant. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
IS JSON WITH | WITHOUT UNIQUE KEYS
These are mostly self-explanatory, but note that IS JSON WITHOUT UNIQUE
KEYS is true whenever IS JSON is true, and IS JSON WITH UNIQUE KEYS is
true whenever IS JSON is true except it IS JSON OBJECT is true and there
are duplicate keys (which is never the case when applied to jsonb values).
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
This patch introduces the SQL/JSON standard constructors for JSON:
JSON()
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
For the most part these functions provide facilities that mimic
existing json/jsonb functions. However, they also offer some useful
additional functionality. In addition to text input, the JSON() function
accepts bytea input, which it will decode and constuct a json value from.
The other functions provide useful options for handling duplicate keys
and null values.
This series of patches will be followed by a consolidated documentation
patch.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
In commit bf7ca1587, I had the bright idea that we could make the
result of a whole-row Var (that is, foo.*) track any column aliases
that had been applied to the FROM entry the Var refers to. However,
that's not terribly logically consistent, because now the output of
the Var is no longer of the named composite type that the Var claims
to emit. bf7ca1587 tried to handle that by changing the output
tuple values to be labeled with a blessed RECORD type, but that's
really pretty disastrous: we can wind up storing such tuples onto
disk, whereupon they're not readable by other sessions.
The only practical fix I can see is to give up on what bf7ca1587
tried to do, and say that the column names of tuples produced by
a whole-row Var are always those of the underlying named composite
type, query aliases or no. While this introduces some inconsistencies,
it removes others, so it's not that awful in the abstract. What *is*
kind of awful is to make such a behavioral change in a back-patched
bug fix. But corrupt data is worse, so back-patched it will be.
(A workaround available to anyone who's unhappy about this is to
introduce an extra level of sub-SELECT, so that the whole-row Var is
referring to the sub-SELECT's output and not to a named table type.
Then the Var is of type RECORD to begin with and there's no issue.)
Per report from Miles Delahunty. The faulty commit dates to 9.5,
so back-patch to all supported branches.
Discussion: https://postgr.es/m/2950001.1638729947@sss.pgh.pa.us
Similar to 50e17ad28, which allowed hash tables to be used for IN clauses
with a set of constants, here we add the same feature for NOT IN clauses.
NOT IN evaluates the same as: WHERE a <> v1 AND a <> v2 AND a <> v3.
Obviously, if we're using a hash table we must be exactly equivalent to
that and return the same result taking into account that either side of
the condition could contain a NULL. This requires a little bit of
special handling to make work with the hash table version.
When processing NOT IN, the ScalarArrayOpExpr's operator will be the <>
operator. To be able to build and lookup a hash table we must use the
<>'s negator operator. The planner checks if that exists and is hashable
and sets the relevant fields in ScalarArrayOpExpr to instruct the executor
to use hashing.
Author: David Rowley, James Coleman
Reviewed-by: James Coleman, Zhihong Yu
Discussion: https://postgr.es/m/CAApHDvoF1mum_FRk6D621edcB6KSHBi2+GAgWmioj5AhOu2vwQ@mail.gmail.com
It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE
list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present.
If it happens, the ON CONFLICT UPDATE code path would end up storing
tuples that include the values of the extra resjunk columns. That's
fairly harmless in the short run, but if new columns are added to
the table then the values would become accessible, possibly leading
to malfunctions if they don't match the datatypes of the new columns.
This had escaped notice through a confluence of missing sanity checks,
including
* There's no cross-check that a tuple presented to heap_insert or
heap_update matches the table rowtype. While it's difficult to
check that fully at reasonable cost, we can easily add assertions
that there aren't too many columns.
* The output-column-assignment cases in execExprInterp.c lacked
any sanity checks on the output column numbers, which seems like
an oversight considering there are plenty of assertion checks on
input column numbers. Add assertions there too.
* We failed to apply nodeModifyTable's ExecCheckPlanOutput() to
the ON CONFLICT UPDATE tlist. That wouldn't have caught this
specific error, since that function is chartered to ignore resjunk
columns; but it sure seems like a bad omission now that we've seen
this bug.
In HEAD, the right way to fix this is to make the processing of
ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists
now do, that is don't add "SET x = x" entries, and use
ExecBuildUpdateProjection to evaluate the tlist and combine it with
old values of the not-set columns. This adds a little complication
to ExecBuildUpdateProjection, but allows removal of a comparable
amount of now-dead code from the planner.
In the back branches, the most expedient solution seems to be to
(a) use an output slot for the ON CONFLICT UPDATE projection that
actually matches the target table, and then (b) invent a variant of
ExecBuildProjectionInfo that can be told to not store values resulting
from resjunk columns, so it doesn't try to store into nonexistent
columns of the output slot. (We can't simply ignore the resjunk columns
altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.)
This works back to v10. In 9.6, projections work much differently and
we can't cheaply give them such an option. The 9.6 version of this
patch works by inserting a JunkFilter when it's necessary to get rid
of resjunk columns.
In addition, v11 and up have the reverse problem when trying to
perform ON CONFLICT UPDATE on a partitioned table. Through a
further oversight, adjust_partition_tlist() discarded resjunk columns
when re-ordering the ON CONFLICT UPDATE tlist to match a partition.
This accidentally prevented the storing-bogus-tuples problem, but
at the cost that MULTIEXPR_SUBLINK cases didn't work, typically
crashing if more than one row has to be updated. Fix by preserving
resjunk columns in that routine. (I failed to resist the temptation
to add more assertions there too, and to do some minor code
beautification.)
Per report from Andres Freund. Back-patch to all supported branches.
Security: CVE-2021-32028
While we were (mostly) careful about ensuring that the dimensions of
arrays aren't large enough to cause integer overflow, the lower bound
values were generally not checked. This allows situations where
lower_bound + dimension overflows an integer. It seems that that's
harmless so far as array reading is concerned, except that array
elements with subscripts notionally exceeding INT_MAX are inaccessible.
However, it confuses various array-assignment logic, resulting in a
potential for memory stomps.
Fix by adding checks that array lower bounds aren't large enough to
cause lower_bound + dimension to overflow. (Note: this results in
disallowing cases where the last subscript position would be exactly
INT_MAX. In principle we could probably allow that, but there's a lot
of code that computes lower_bound + dimension and would need adjustment.
It seems doubtful that it's worth the trouble/risk to allow it.)
Somewhat independently of that, array_set_element() was careless
about possible overflow when checking the subscript of a fixed-length
array, creating a different route to memory stomps. Fix that too.
Security: CVE-2021-32027
Previously, get_cached_rowtype() cached a pointer to a reference-counted
tuple descriptor from the typcache, relying on the ExprContextCallback
mechanism to release the tupdesc refcount when the expression tree
using the tupdesc was destroyed. This worked fine when it was designed,
but the introduction of within-DO-block COMMITs broke it. The refcount
is logged in a transaction-lifespan resource owner, but plpgsql won't
destroy simple expressions made within the DO block (before its first
commit) until the DO block is exited. That results in a warning about
a leaked tupdesc refcount when the COMMIT destroys the original resource
owner, and then an error about the active resource owner not holding a
matching refcount when the expression is destroyed.
To fix, get rid of the need to have a shutdown callback at all, by
instead caching a pointer to the relevant typcache entry. Those
survive for the life of the backend, so we needn't worry about the
pointer becoming stale. (For registered RECORD types, we can still
cache a pointer to the tupdesc, knowing that it won't change for the
life of the backend.) This mechanism has been in use in plpgsql
and expandedrecord.c since commit 4b93f5799, and seems to work well.
This change requires modifying the ExprEvalStep structs used by the
relevant expression step types, which is slightly worrisome for
back-patching. However, there seems no good reason for extensions
to be familiar with the details of these particular sub-structs.
Per report from Rohit Bhogate. Back-patch to v11 where within-DO-block
COMMITs became a thing.
Discussion: https://postgr.es/m/CAAV6ZkQRCVBh8qAY+SZiHnz+U+FqAGBBDaDTjF2yiKa2nJSLKg@mail.gmail.com