When we write tuples out to disk and read them back in, the abbreviated
keys become non-abbreviated, because the readtup routines don't know
anything about abbreviation. But without this fix, the rest of the
code still thinks the abbreviation-aware compartor should be used,
so chaos ensues.
Report by Andrew Gierth; patch by Peter Geoghegan.
This commit extends the SortSupport infrastructure to allow operator
classes the option to provide abbreviated representations of Datums;
in the case of text, we abbreviate by taking the first few characters
of the strxfrm() blob. If the abbreviated comparison is insufficent
to resolve the comparison, we fall back on the normal comparator.
This can be much faster than the old way of doing sorting if the
first few bytes of the string are usually sufficient to resolve the
comparison.
There is the potential for a performance regression if all of the
strings to be sorted are identical for the first 8+ characters and
differ only in later positions; therefore, the SortSupport machinery
now provides an infrastructure to abort the use of abbreviation if
it appears that abbreviation is producing comparatively few distinct
keys. HyperLogLog, a streaming cardinality estimator, is included in
this commit and used to make that determination for text.
Peter Geoghegan, reviewed by me.
xlog.c is huge, this makes it a little bit smaller, which is nice. Functions
related to putting together the WAL record are in xloginsert.c, and the
lower level stuff for managing WAL buffers and such are in xlog.c.
Also move the definition of XLogRecord to a separate header file. This
causes churn in the #includes of all the files that write WAL records, and
redo routines, but it avoids pulling in xlog.h into most places.
Reviewed by Michael Paquier, Alvaro Herrera, Andres Freund and Amit Kapila.
This could be useful for datatypes like text, where we might want
to optimize for some collations but not others. However, this patch
doesn't introduce any new sortsupport functions that work this way;
it merely revises the code so that future patches may do so.
Patch by me. Review by Peter Geoghegan.
The previous code, perhaps out of concern for avoid memory leaks, formed
the tuple in one memory context and then copied it to another memory
context. However, this doesn't appear to be necessary, since
index_form_tuple and the functions it calls take precautions against
leaking memory. In my testing, building the tuple directly inside the
sort context shaves several percent off the index build time.
Rearrange things so we do that.
Patch by me. Review by Amit Kapila, Tom Lane, Andres Freund.
We should report the errno when we get a failure from functions like
BufFileWrite. "ERROR: write failed" is unreasonably taciturn for a
case that's well within the realm of possibility; I've seen it a
couple times in the buildfarm recently, in situations that were
probably out-of-disk-space, but it'd be good to see the errno
to confirm it.
I think this code was originally written without assuming that
the buffile.c functions would return useful errno; but most other
callers *are* assuming that, and a quick look at the buffile code
gives no reason to suppose otherwise.
Also, a couple of the old messages were phrased on the assumption
that a short read might indicate a logic bug in tuplestore itself;
but that code's pretty well tested by now, so a filesystem-level
problem seems much more likely.
Repositioning the tuplestore seek pointer in window_gettupleslot() turns
out to be a very significant expense when the window frame is sizable and
the frame end can move. To fix, introduce a tuplestore function for
skipping an arbitrary number of tuples in one call, parallel to the one we
introduced for tuplesort objects in commit 8d65da1f. This reduces the cost
of window_gettupleslot() to O(1) if the tuplestore has not spilled to disk.
As in the previous commit, I didn't try to do any real optimization of
tuplestore_skiptuples for the case where the tuplestore has spilled to
disk. There is probably no practical way to get the cost to less than O(N)
anyway, but perhaps someone can think of something later.
Also fix PersistHoldablePortal() to make use of this API now that we have
it.
Based on a suggestion by Dean Rasheed, though this turns out not to look
much like his patch.
This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()). We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.
Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions. To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c. This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need. There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.
In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates. Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.
Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
In tuplesort.c:inittapes(), we calculate tapeSpace by first figuring
out how many 'tapes' we can use (maxTapes) and then multiplying the
result by the tape buffer overhead for each. Unfortunately, when
we are on a system with an 8-byte long, we allow work_mem to be
larger than 2GB and that allows maxTapes to be large enough that the
32bit arithmetic can overflow when multiplied against the buffer
overhead.
When this overflow happens, we end up adding the overflow to the
amount of space available, causing the amount of memory allocated to
be larger than work_mem.
Note that to reach this point, you have to set work mem to at least
24GB and be sorting a set which is at least that size. Given that a
user who can set work_mem to 24GB could also set it even higher, if
they were looking to run the system out of memory, this isn't
considered a security issue.
This overflow risk was found by the Coverity scanner.
Back-patch to all supported branches, as this issue has existed
since before 8.4.
Commit 263865a489 switched tuplesort.c and
tuplestore.c variables representing memory usage from type "long" to
type "Size". This was unnecessary; I thought doing so avoided overflow
scenarios on 64-bit Windows, but guc.c already limited work_mem so as to
prevent the overflow. It was also incomplete, not touching the logic
that assumed a signed data type. Change the affected variables to
"int64". This is perfect for 64-bit platforms, and it reduces the need
to contemplate platform-specific overflow scenarios. It also puts us
close to being able to support work_mem over 2 GiB on 64-bit Windows.
Per report from Andres Freund.
The MaxAllocSize guard is convenient for most callers, because it
reduces the need for careful attention to overflow, data type selection,
and the SET_VARSIZE() limit. A handful of callers are happy to navigate
those hazards in exchange for the ability to allocate a larger chunk.
Introduce MemoryContextAllocHuge() and repalloc_huge(). Use this in
tuplesort.c and tuplestore.c, enabling internal sorts of up to INT_MAX
tuples, a factor-of-48 increase. In particular, B-tree index builds can
now benefit from much-larger maintenance_work_mem settings.
Reviewed by Stephen Frost, Simon Riggs and Jeff Janes.
This patch addresses the problem that applications currently have to
extract object names from possibly-localized textual error messages,
if they want to know for example which index caused a UNIQUE_VIOLATION
failure. It adds new error message fields to the wire protocol, which
can carry the name of a table, table column, data type, or constraint
associated with the error. (Since the protocol spec has always instructed
clients to ignore unrecognized field types, this should not create any
compatibility problem.)
Support for providing these new fields has been added to just a limited set
of error reports (mainly, those in the "integrity constraint violation"
SQLSTATE class), but we will doubtless add them to more calls in future.
Pavel Stehule, reviewed and extensively revised by Peter Geoghegan, with
additional hacking by Tom Lane.
The code originally just doubled the size of the tuple-pointer array so
long as that would fit in allowedMem. This could result in failing to use
as much as half of allowedMem, if (as is typical) the last doubling attempt
didn't quite fit. Worse, we might double the array size but be unable to
use most of the added slots, because there was no room left within the
allowedMem limit for tuples the slots should point to. To fix, double only
so long as we've used less than half of allowedMem in total. Then do one
more array enlargement, but scale it based on total memory consumption so
far. This will work nicely as long as the average tuple size is reasonably
stable, and in any case should be better than the old method.
This change will result in large sort operations consuming a larger
fraction of work_mem than they typically did in the past. The release
notes should mention that users may want to revisit their work_mem
settings, if they'd tuned those settings based on the old behavior of
sorting.
Jeff Janes, reviewed by Peter Geoghegan and Robert Haas
We already had those, but they forced modules to spell out the function
bodies twice. Eliminate some duplicates we had already grown.
Extracted from a somewhat larger patch from Andres Freund.
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
Commit 337b6f5ecf contained the entirely
fanciful assumption that it had made comparetup_datum unreachable.
Reported and patched by Takashi Yamamoto.
Fix up some not terribly accurate/useful comments from that commit, too.
I broke this in commit 337b6f5ecf, which
among other things arranged for quicksorts to CHECK_FOR_INTERRUPTS()
slightly less frequently. Sadly, it also arranged for heapsorts to
CHECK_FOR_INTERRUPTS() much less frequently. Repair.
Per recent work by Peter Geoghegan, it's significantly faster to
tuplesort on a single sortkey if ApplySortComparator is inlined into
quicksort rather reached via a function pointer. It's also faster
in general to have a version of quicksort which is specialized for
sorting SortTuple objects rather than objects of arbitrary size and
type. This requires a couple of additional copies of the quicksort
logic, which in this patch are generate using a Perl script. There
might be some benefit in adding further specializations here too,
but thus far it's not clear that those gains are worth their weight
in code footprint.
Our own qsort_arg() implementation doesn't have the defect previously
observed to affect only QNX 4, so it seems sufficiently to assert that
it isn't broken rather than retesting. Also, update a few comments to
clarify why it's valuable to retain a tie-break rule based on CTID
during index builds.
Peter Geoghegan, with slight tweaks by me.
This patch creates an API whereby a btree index opclass can optionally
provide non-SQL-callable support functions for sorting. In the initial
patch, we only use this to provide a directly-callable comparator function,
which can be invoked with a bit less overhead than the traditional
SQL-callable comparator. While that should be of value in itself, the real
reason for doing this is to provide a datatype-extensible framework for
more aggressive optimizations, as in Peter Geoghegan's recent work.
Robert Haas and Tom Lane
This oversight could result in a tuplestore using much more than the
intended amount of memory. It would only happen in a code path that loaded
a tuplestore via tuplestore_putvalues(), and many of those won't emit huge
amounts of data; but cases such as holdable cursors and plpgsql's RETURN
NEXT command could have the problem. The fix ensures that the tuplestore
will switch to write-to-disk mode when it overruns work_mem.
The potential overrun was finite, because we would still count the space
used by the tuple pointer array, so the tuplestore code would eventually
flip into write-to-disk mode anyway. When storing wide tuples we would
go far past the expected work_mem usage before that happened; but this
may account for the lack of prior reports.
Back-patch to 8.4, where tuplestore_putvalues was introduced.
Per bug #6061 from Yann Delorme.
Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
All expression nodes now have an explicit output-collation field, unless
they are known to only return a noncollatable data type (such as boolean
or record). Also, nodes that can invoke collation-aware functions store
a separate field that is the collation value to pass to the function.
This avoids confusion that arises when a function has collatable inputs
and noncollatable output type, or vice versa.
Also, replace the parser's on-the-fly collation assignment method with
a post-pass over the completed expression tree. This allows us to use
a more complex (and hopefully more nearly spec-compliant) assignment
rule without paying for it in extra storage in every expression node.
Fix assorted bugs in the planner's handling of collations by making
collation one of the defining properties of an EquivalenceClass and
by converting CollateExprs into discardable RelabelType nodes during
expression preprocessing.
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
The original coding in tuplestore_trim() was only meant to work efficiently
in cases where each trim call deleted most of the tuples in the store.
Which, in fact, was the pattern of the original usage with a Material node
supporting mark/restore operations underneath a MergeJoin. However,
WindowAgg now uses tuplestores and it has considerably less friendly
trimming behavior. In particular it can attempt to trim one tuple at a
time off a large tuplestore. tuplestore_trim() had O(N^2) runtime in this
situation because of repeatedly shifting its tuple pointer array. Fix by
avoiding shifting the array until a reasonably large number of tuples have
been deleted. This can waste some pointer space, but we do still reclaim
the tuples themselves, so the percentage wastage should be pretty small.
Per Jie Li's report of slow percent_rank() evaluation. cume_dist() and
ntile() would certainly be affected as well, along with any other window
function that has a moving frame start and requires reading substantially
ahead of the current row.
Back-patch to 8.4, where window functions were introduced. There's no
need to tweak it before that.
Use a macro LogicalTapeReadExact() to encapsulate the error check when
we want to read an exact number of bytes from a "tape". Per a suggestion
of Takahiro Itagaki.
PL/pgSQL function within an exception handler. Make sure we use the right
resource owner when we create the tuplestore to hold returned tuples.
Simplify tuplestore API so that the caller doesn't need to be in the right
memory context when calling tuplestore_put* functions. tuplestore.c
automatically switches to the memory context used when the tuplestore was
created. Tuplesort was already modified like this earlier. This patch also
removes the now useless MemoryContextSwitch calls from callers.
Report by Aleksei on pgsql-bugs on Dec 22 2009. Backpatch to 8.1, like
the previous patch that broke this.