Make slightly better decisions about indentation than what pgindent
is capable of. Mostly breaking out long function calls into one
line per argument, with a few other minor adjustments.
No functional changes- all whitespace.
pgindent ran cleanly (didn't change anything) after.
Passes all regressions.
Remove use of PageSetTLI() from all page manipulation functions
and adjust README to indicate change in the way we make changes
to pages. Repurpose those bytes into the pd_checksum field and
explain how that works in comments about page header.
Refactoring ahead of actual feature patch which would make use
of the checksum field, arriving later.
Jeff Davis, with comments and doc changes by Simon Riggs
Direction suggested by Robert Haas; many others providing
review comments.
The reason this wasn't supported before was that GiST indexes need an
increasing sequence to detect concurrent page-splits. In a regular WAL-
logged GiST index, the LSN of the page-split record is used for that
purpose, and in a temporary index, we can get away with a backend-local
counter. Neither of those methods works for an unlogged relation.
To provide such an increasing sequence of numbers, create a "fake LSN"
counter that is saved and restored across shutdowns. On recovery, unlogged
relations are blown away, so the counter doesn't need to survive that
either.
Jeevan Chalke, based on discussions with Robert Haas, Tom Lane and me.
We use a hash table to track the parents of inner pages, but when inserting
to a leaf page, the caller of gistbufferinginserttuples() must pass a
correct block number of the leaf's parent page. Before gistProcessItup()
descends to a child page, it checks if the downlink needs to be adjusted to
accommodate the new tuple, and updates the downlink if necessary. However,
updating the downlink might require splitting the page, which might move the
downlink to a page to the right. gistProcessItup() doesn't realize that, so
when it descends to the leaf page, it might pass an out-of-date parent block
number as a result. Fix that by returning the block a tuple was inserted to
from gistbufferinginserttuples().
This fixes the bug reported by Zdeněk Jílovec.
We used to mimic the way a stack is constructed when descending the tree
during normal GiST inserts, but that was quite complicated during a buffered
build. It was also wrong: in GiST, the left-to-right relationships on
different levels might not match each other, so that when you know the
parent of a child page, you won't necessarily find the parent of the page to
the right of the child page by following the rightlinks at the parent level.
This sometimes led to "could not re-find parent" errors while building a
GiST index.
We now use a simple hash table to track the parent of every internal page.
Whenever a page is split, and downlinks are moved from one page to another,
we update the hash table accordingly. This is also better for performance
than the old method, as we never need to move right to re-find the parent
page, which could take a significant amount of time for buffers that were
created much earlier in the index build.
There were two bugs here: We forgot to call gistFreeBuildBuffers() function
at the end of build, and we passed interXact == true to BufFileCreateTemp,
so the file wasn't automatically cleaned up at end-of-transaction either.
The result of (maintenance_work_mem * 1024) / BLCKSZ doesn't fit in a signed
32-bit integer, if maintenance_work_mem >= 2GB. Use double instead. And
while we're at it, write the calculations in an easier to understand form,
with the intermediary steps written out and commented.
pg_trgm was already doing this unofficially, but the implementation hadn't
been thought through very well and leaked memory. Restructure the core
GiST code so that it actually works, and document it. Ordinarily this
would have required an extra memory context creation/destruction for each
GiST index search, but I was able to avoid that in the normal case of a
non-rescanned search by finessing the handling of the RBTree. It used to
have its own context always, but now shares a context with the
scan-lifespan data structures, unless there is more than one rescan call.
This should make the added overhead unnoticeable in typical cases.
queuedForEmptying flag correctly on buffer when adding it to the queue.
Also, don't add buffer to the queue if it's there already. These were
harmless oversights; failing to set the flag just means that a buffer might
get added to the queue twice if more tuples are added to it (although that
can't actually happen at this point because all the upper buffers have
already been emptied), and having the same buffer twice in the emptying
queue is harmless. But better be tidy.
When building a GiST index that doesn't fit in cache, buffers are attached
to some internal nodes in the index. This speeds up the build by avoiding
random I/O that would otherwise be needed to traverse all the way down the
tree to the find right leaf page for tuple.
Alexander Korotkov