Partitioning tuple route code assumes that the partition chosen while
descending the partition hierarchy is always the correct one. This is
true except when the partition is the default partition and another
partition has been added concurrently: the partition constraint changes
and we don't recheck it. This can lead to tuples mistakenly being added
to the default partition that should have been rejected.
Fix by rechecking the default partition constraint while descending the
hierarchy.
An isolation test based on the reproduction steps described by Hao Wu
(with tweaks for extra coverage) is included.
Backpatch to 12, where this bug came in with 898e5e3290a7.
Reported by: Hao Wu <hawu@vmware.com>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Discussion: https://postgr.es/m/CA+HiwqFqBmcSSap4sFnCBUEL_VfOMmEKaQ3gwUhyfa4c7J_-nA@mail.gmail.com
Discussion: https://postgr.es/m/DM5PR0501MB3910E97A9EDFB4C775CF3D75A42F0@DM5PR0501MB3910.namprd05.prod.outlook.com
nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan
has the form of one or more OpExprs whose LHS is an expression of the
outer query's, while the RHS is an expression over Params representing
output columns of the subquery. However, the planner only went as far
as verifying that the clauses were all binary OpExprs. This works
99.99% of the time, because the clauses have the right shape when
emitted by the parser --- but it's possible for function inlining to
break that, as reported by PegoraroF10. To fix, teach the planner
to check that the LHS and RHS contain the right things, or more
accurately don't contain the wrong things. Given that this has been
broken for years without anyone noticing, it seems sufficient to just
give up hashing when it happens, rather than go to the trouble of
commuting the clauses back again (which wouldn't necessarily work
anyway).
While poking at that, I also noticed that nodeSubplan.c had a baked-in
assumption that the number of hash clauses is identical to the number
of subquery output columns. Again, that's fine as far as parser output
goes, but it's not hard to break it via function inlining. There seems
little reason for that assumption though --- AFAICS, the only thing
it's buying us is not having to store the number of hash clauses
explicitly. Adding code to the planner to reject such cases would take
more code than getting nodeSubplan.c to cope, so I fixed it that way.
This has been broken for as long as we've had hashable SubPlans,
so back-patch to all supported branches.
Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com
Since we no longer require AccessExclusiveLock to add a partition,
the executor may see that a partitioned table has more partitions
than the planner saw. ExecCreatePartitionPruneState's code for
matching up the partition lists in such cases was faulty, and would
misbehave if the planner had successfully pruned any partitions from
the query. (Thus, trouble would occur only if a partition addition
happens concurrently with a query that uses both static and dynamic
partition pruning.) This led to an Assert failure in debug builds,
and probably to crashes or query misbehavior in production builds.
To repair the bug, just explicitly skip zeroes in the plan's
relid_map[] list. I also made some cosmetic changes to make the code
more readable (IMO anyway). Also, convert the cross-checking Assert
to a regular test-and-elog, since it's now apparent that this logic
is more fragile than one would like.
Currently, there's no way to repeatably exercise this code, except
with manual use of a debugger to stop the backend between planning
and execution. Hence, no test case in this patch. We oughta do
something about that testability gap, but that's for another day.
Amit Langote and Tom Lane, per report from Justin Pryzby. Oversight
in commit 898e5e329; backpatch to v12 where that appeared.
Discussion: https://postgr.es/m/20200802181131.GA27754@telsasoft.com
Commit 85c9d347 addressed a similar problem for Gather and Gather
Merge nodes but forgot to account for nodes above parallel nodes. This
still works for nodes above Gather node because we shut down the workers
for Gather node as soon as there are no more tuples. We can do a similar
thing for Gather Merge as well but it seems better to account for stats
during nodes shutdown after completing the execution.
Reported-by: Stéphane Lorek, Jehan-Guillaume de Rorthais
Author: Jehan-Guillaume de Rorthais <jgdr@dalibo.com>
Reviewed-by: Amit Kapila
Backpatch-through: 10, where it was introduced
Discussion: https://postgr.es/m/20200718160206.584532a2@firost
Convert buffile.c error handling to use ereport. This fixes cases where
I/O errors were indistinguishable from EOF or not reported. Also remove
"%m" from error messages where errno would be bogus. While we're
modifying those strings, add block numbers and short read byte counts
where appropriate.
Back-patch to all supported releases.
Reported-by: Amit Khandekar <amitdkhan.pg@gmail.com>
Reviewed-by: Melanie Plageman <melanieplageman@gmail.com>
Reviewed-by: Alvaro Herrera <alvherre@2ndquadrant.com>
Reviewed-by: Robert Haas <robertmhaas@gmail.com>
Reviewed-by: Ibrar Ahmed <ibrar.ahmad@gmail.com>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://postgr.es/m/CA%2BhUKGJE04G%3D8TLK0DLypT_27D9dR8F1RQgNp0jK6qR0tZGWOw%40mail.gmail.com
In a logical replication subscriber, a table using REPLICA IDENTITY FULL
which has a primary key would try to use the primary key's index
available to scan for a tuple, but an assertion only assumed as correct
the case of an index associated to REPLICA IDENTITY USING INDEX. This
commit corrects the assertion so as the use of a primary key index is a
valid case.
Reported-by: Dilip Kumar
Analyzed-by: Dilip Kumar
Author: Euler Taveira
Reviewed-by: Michael Paquier, Masahiko Sawada
Discussion: https://postgr.es/m/CAFiTN-u64S5bUiPL1q5kwpHNd0hRnf1OE-bzxNiOs5zo84i51w@mail.gmail.com
Backpatch-through: 10
In a9c35cf85ca I changed ExecMakeTableFunctionResult() to dynamically
allocate the FunctionCallInfo used to call the SRF. Unfortunately I
did not account for the fact that the surrounding memory context has
query lifetime, leading to a leak till the end of the query.
In most cases the leak is fairly inconsequential, but if the
FunctionScan is done many times in the query, the leak can add
up. This happens e.g. if the function scan is on the inner side of a
nested loop, due to a lateral join.
EXPLAIN SELECT sum(f) FROM generate_series(1, 100000000) g(i), generate_series(i, i+1) f;
quickly shows the leak.
Instead of explicitly freeing the FunctionCallInfo it seems better to
make sure all the per-set temporary state in
ExecMakeTableFunctionResult() is cleaned up wholesale. Currently
that's probably just the FunctionCallInfo allocation, but since
there's some initialization work, and since there's already an
appropriate context, this seems like a more robust approach.
Bug: #16112
Reported-By: Ben Cornett
Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/16112-4448bbf55a404189%40postgresql.org
Backpatch: 12, a9c35cf85ca
Working on commit 1c455078b led me to check through FunctionCallInvoke
call sites to see if every one was being honest about (a) making sure
that fcinfo.isnull is initially false, and (b) checking its state after
the call. Sure enough, I found some violations.
The main one is that finalize_partialaggregate re-used serialfn_fcinfo
without resetting isnull, even though it clearly intends to cater for
serialfns that return NULL. There would only be an issue with a
non-strict serialfn, since it's unlikely that a serialfn would return
NULL for non-null input. We have no non-strict serialfns in core, and
there may be none in the wild either, which would account for the lack
of complaints. Still, it's clearly wrong, so back-patch that fix to
9.6 where finalize_partialaggregate was introduced.
Also, arrayfuncs.c and rowtypes.c contained various callers that were
not bothering to check for result nulls. While what's being called is
a comparison or hash function that probably *shouldn't* return null,
that's a lousy excuse for not having any check at all. There are
existing places that just Assert(!fcinfo->isnull) in comparable
situations, so I added that to the places that were calling btree
comparison or hash support functions. In the places calling
boolean-returning equality functions, it's quite cheap to have them
treat isnull as FALSE, so make those places do that. Also remove some
"locfcinfo->isnull = false" assignments that are unnecessary given the
assumption that no previous call returned null. These changes seem like
mostly neatnik-ism or debugging support, so I didn't back-patch.
In some corner cases, this could also lead to corrupted values being
included in the tuple.
Users who are concerned that they are affected by this should first
upgrade and then perform a base backup of their database and restore onto
an off-line server. They should then query each table with generated
columns to ensure there are no rows where the generated expression does
not match a newly calculated version of the GENERATED ALWAYS expression.
If no crashes occur and no rows are returned then you're not affected.
Fixes bug #16369.
Reported-by: Cameron Ezell
Discussion: https://postgr.es/m/16369-5845a6f1bef59884@postgresql.org
Backpatch-through: 12 (where GENERATED ALWAYS columns were added.)
ExecReScanHashJoin will destroy the join's hash table if it expects
that the inner relation will produce different rows on rescan.
Up to now it's not bothered to clear the additional pointer to that
hash table that exists in the child HashState node. However, it's
possible for the query to terminate without building a fresh hash
table (this happens if the outer relation is found to be empty
during the final rescan). So we can end with a dangling pointer
to a deleted hash table. That was harmless originally, but since
9.0 EXPLAIN ANALYZE has used that pointer to print hash table
statistics. In debug builds this reproducibly results in garbage
statistics. In non-debug builds there's frequently no ill effects,
but in principle one could get wrong EXPLAIN ANALYZE output, or
perhaps even a crash if free() has released the hashtable memory
back to the OS.
To fix, just make sure we clear the additional pointer when destroying
the hash table. In problematic cases, EXPLAIN ANALYZE will then print
no hashtable statistics (reverting to its pre-9.0 behavior). This isn't
ideal, but since the problem manifests only in unusual corner cases,
it's hard to justify taking any risks to do better in the back
branches. A follow-on patch will improve matters in HEAD.
Konstantin Knizhnik and Tom Lane, per diagnosis by Thomas Munro
of a trouble report from Alvaro Herrera.
Discussion: https://postgr.es/m/20200323165059.GA24950@alvherre.pgsql
Commit 356687bd8 omitted to remove leftover code for destroying
a hashed subplan's hash tables, with the result that the tables
were always rebuilt not reused; this leads to severe memory
leakage if a hashed subplan is re-executed enough times.
Moreover, the code for reusing the hashnulls table had a typo
that would have made it do the wrong thing if it were reached.
Looking at the code coverage report shows severe under-coverage
of the potential callers of ResetTupleHashTable, so add some test
cases that exercise them.
Andreas Karlsson and Tom Lane, per reports from Ranier Vilela
and Justin Pryzby.
Backpatch to v11, as the faulty commit was.
Discussion: https://postgr.es/m/edb62547-c453-c35b-3ed6-a069e4d6b937@proxel.se
Discussion: https://postgr.es/m/CAEudQAo=DCebm1RXtig9OH+QivpS97sMkikt0A9qHmMUs+g6ZA@mail.gmail.com
Discussion: https://postgr.es/m/20200210032547.GA1412@telsasoft.com
Commit 147e3722f7 changed Tid scan so that it calls table_beginscan()
and uses the scan option for seq scan. This change caused two issues.
(1) The change caused Tid scan to take a predicate lock on the entire
relation in serializable transaction even when relation-level
lock is not necessary. This could lead to an unexpected
serialization error.
(2) The change caused Tid scan to increment the number of seq_scan
in pg_stat_*_tables views even though it's not seq scan. This
could confuse the users.
This commit adds the scan option for Tid scan and makes Tid scan
use it, to avoid those issues.
Back-patch to v12, where the bug was introduced.
Author: Tatsuhito Kasahara
Reviewed-by: Kyotaro Horiguchi, Masahiko Sawada, Fujii Masao
Discussion: https://postgr.es/m/CAP0=ZVKy+gTbFmB6X_UW0pP3WaeJ-fkUWHoD-pExS=at3CY76g@mail.gmail.com
When replica identity is FULL (an admittedly unusual case), the loop
that searches for tuples in execReplication.c didn't stop scanning the
table when once a matching tuple was found. Add the missing 'break'.
Note slight behavior change: we now return the first matching tuple
rather than the last one. They are supposed to be indistinguishable
anyway, so this shouldn't matter.
Author: Konstantin Knizhnik
Discussion: https://postgr.es/m/379743f6-ae91-b866-f7a2-5624e6d2b0a4@postgrespro.ru
EvalPlanQualStart() supposed that it could re-use the relsubs_rowmark
and relsubs_done arrays from a prior instantiation. But since they are
allocated in the es_query_cxt of the recheckestate, that's just wrong;
EvalPlanQualEnd() will blow away that storage. Therefore we were using
storage that could have been reallocated to something else, causing all
sorts of havoc.
I think this was modeled on the old code's handling of es_epqTupleSlot,
but since the code was anyway clearing the arrays at re-use, there's
clearly no expectation of importing any outside state. So it's just
a dubious savings of a couple of pallocs, which is negligible compared
to setting up a new planstate tree. Therefore, just allocate the
arrays always. (I moved the allocations slightly for readability.)
In principle this bug could cause a problem whenever EPQ rechecks are
needed in more than one target table of a ModifyTable plan node.
In practice it seems not quite so easy to trigger as that; I couldn't
readily duplicate a crash with a partitioned target table, for instance.
That's probably down to incidental choices about when to free or
reallocate stuff. The added isolation test case does seem to reliably
show an assertion failure, though.
Per report from Oleksii Kliukin. Back-patch to v12 where the bug was
introduced (evidently by commit 3fb307bc4).
Discussion: https://postgr.es/m/EEF05F66-2871-4786-992B-5F45C92FEE2E@hintbits.com
Currently, Parallel Hash Join cannot be used for full/right joins,
so there is no point in setting the match flag. It turns out that
the cache coherence traffic generated by those writes slows down
large systems running many-core joins, so let's stop doing that.
In future, if we need to use match bits in parallel joins, we might
want to consider setting them only if not already set.
Back-patch to 11, where Parallel Hash Join arrived.
Reported-by: Deng, Gang
Discussion: https://postgr.es/m/0F44E799048C4849BAE4B91012DB910462E9897A%40SHSMSX103.ccr.corp.intel.com
The code checking whether an aggregate transition value needs to be
reparented into the current context has always only compared the
transition return value with the previous transition value by datum,
i.e. without regard for NULLness. This normally works, because when
the transition function returns NULL (via fcinfo->isnull), it'll
return a value that won't be the same as its input value.
But there's no hard requirement that that's the case. And it turns
out, it's possible to hit this case (see discussion or reproducers),
leading to a non-null transition value not being reparented, followed
by a crash caused by that.
Instead of adding another comparison of NULLness, instead have
ExecAggTransReparent() ensure that pergroup->transValue ends up as 0
when the new transition value is NULL. That avoids having to add an
additional branch to the much more common cases of the transition
function returning the old transition value (which is a pointer in
this case), and when the new value is different, but not NULL.
In branches since 69c3936a149, also deduplicate the reparenting code
between the expression evaluation based transitions, and the path for
ordered aggregates.
Reported-By: Teodor Sigaev, Nikita Glukhov
Author: Andres Freund
Discussion: https://postgr.es/m/bd34e930-cfec-ea9b-3827-a8bc50891393@sigaev.ru
Backpatch: 9.4-, this issue has existed since at least 7.4
Commit 9b63c13f0 turns out to have been fundamentally misguided:
the parent node's subPlan list is by no means the only way in which
a child SubPlan node can be hooked into the outer execution state.
As shown in bug #16213 from Matt Jibson, we can also get short-lived
tuple table slots added to the outer es_tupleTable list. At this point
I have little faith that there aren't other possible connections as
well; the long time it took to notice this problem shows that this
isn't a heavily-exercised situation.
Therefore, revert that fix, returning to the coding that passed a
NULL parent plan pointer down to the transiently-built subexpressions.
That gives us a pretty good guarantee that they won't hook into the
outer executor state in any way. But then we need some other solution
to make SubPlans work. Adopt the solution speculated about in the
previous commit's log message: do expression initialization at plan
startup for just those VALUES rows containing SubPlans, abandoning the
goal of reclaiming memory intra-query for those rows. In practice it
seems unlikely that queries containing a vast number of VALUES rows
would be using SubPlans in them, so this should not give up much.
(BTW, this test case also refutes my claim in connection with the prior
commit that the issue only arises with use of LATERAL. That was just
wrong: some variants of SubLink always produce SubPlans.)
As with previous patch, back-patch to all supported branches.
Discussion: https://postgr.es/m/16213-871ac3bc208ecf23@postgresql.org
A view with conditional INSTEAD rules and no unconditional INSTEAD
rules or INSTEAD OF triggers is not auto-updatable. Previously we
relied on a check in the executor to catch this, but that's
problematic since the planner may fail to properly handle such a query
and thus return a particularly unhelpful error to the user, before
reaching the executor check.
Instead, trap this in the rewriter and report the correct error there.
Doing so also allows us to include more useful error detail than the
executor check can provide. This doesn't change the existing behaviour
of updatable views; it merely ensures that useful error messages are
reported when a view isn't updatable.
Per report from Pengzhou Tang, though not adopting that suggested fix.
Back-patch to all supported branches.
Discussion: https://postgr.es/m/CAG4reAQn+4xB6xHJqWdtE0ve_WqJkdyCV4P=trYr4Kn8_3_PEA@mail.gmail.com
Our algorithm for choosing batch numbers turned out not to work
effectively for multi-billion key inner relations. We would use
more hash bits than we have, and effectively concentrate all tuples
into a smaller number of batches than we intended. While ideally
we should switch to wider hashes, for now, change the algorithm to
one that effectively gives up bits from the bucket number when we
don't have enough bits. That means we'll finish up with longer
bucket chains than would be ideal, but that's better than having
batches that don't fit in work_mem and can't be divided.
Batch-patch to all supported releases.
Author: Thomas Munro
Reviewed-by: Tom Lane, thanks also to Tomas Vondra, Alvaro Herrera, Andres Freund for testing and discussion
Reported-by: James Coleman
Discussion: https://postgr.es/m/16104-dc11ed911f1ab9df%40postgresql.org
Revert part of commit 19df1702f5.
Early shutdown was added by that commit so that we could collect
statistics from workers, but unfortunately, it interacted badly with
rescans. The problem is that we ended up destroying the parallel context
which is required for rescans. This leads to rescans of a Limit node over
a Gather node to produce unpredictable results as it tries to access
destroyed parallel context. By reverting the early shutdown code, we
might lose statistics in some cases of Limit over Gather [Merge], but that
will require further study to fix.
Reported-by: Jerry Sievers
Diagnosed-by: Thomas Munro
Author: Amit Kapila, testcase by Vignesh C
Backpatch-through: 9.6
Discussion: https://postgr.es/m/87ims2amh6.fsf@jsievers.enova.com
Call ExecShutdownNode() after ExecutePlan()'s loop, rather than at each
break. We had forgotten to do that in one case. The omission caused
intermittent "temporary file leak" warnings from multi-batch parallel
hash joins with a LIMIT clause.
Back-patch to 11. Though the problem exists in theory in earlier
parallel query releases, nothing really depended on it.
Author: Kyotaro Horiguchi
Reviewed-by: Thomas Munro, Amit Kapila
Discussion: https://postgr.es/m/20191111.212418.2222262873417235945.horikyota.ntt%40gmail.com
Avoid creating transiently-inconsistent slot states where possible,
by not setting TTS_FLAG_SHOULDFREE until after the slot actually has
a free'able tuple pointer, and by making sure that we reset tts_nvalid
and related derived state before we replace the tuple contents. This
would only matter if something were to examine the slot after we'd
suffered some kind of error (e.g. out of memory) while manipulating
the slot. We typically don't do that, so these changes might just be
cosmetic --- but even if so, it seems like good future-proofing.
Also remove some redundant Asserts, and add a couple for consistency.
Back-patch to v12 where all this code was rewritten.
Discussion: https://postgr.es/m/16095-c3ff2e5283b8dba5@postgresql.org
In the course of 5567d12ce03, 356687bd8 and 317ffdfeaac, I changed
BuildTupleHashTable[Ext]'s call to ExecBuildGroupingEqual to not pass
in the parent node, but NULL. Which in turn prevents the tuple
equality comparator from being JIT compiled. While that fixes
bug #15486, it is not actually necessary after all of the above commits,
as we don't re-build the comparator when using the new
BuildTupleHashTableExt() interface (as the content of the hashtable
are reset, but the TupleHashTable itself is not).
Therefore re-allow jit compilation for callers that use
BuildTupleHashTableExt with a separate context for "metadata" and
content.
As in the previous commit, there's ongoing work to make this easier to
test to prevent such regressions in the future, but that
infrastructure is not going to be backpatchable.
The performance impact of not JIT compiling hashtable equality
comparators can be substantial e.g. for aggregation queries that
aggregate a lot of input rows to few output rows (when there are a lot
of output groups, there will be fewer comparisons).
Author: Andres Freund
Discussion: https://postgr.es/m/20190927072053.njf6prdl3vb7y7qb@alap3.anarazel.de
Backpatch: 11, just as 5567d12ce03
For many queries the fact that the tuple descriptor from the lower
node was not taken into account when determining whether the type of a
slot is fixed, lead to tuple deforming for such upper nodes not to be
JIT accelerated.
I broke this in 675af5c01e297.
There is ongoing work to enable writing regression tests for related
behavior (including a patch that would have detected this
regression), by optionally showing such details in EXPLAIN. But as it
seems unlikely that that will be suitable for stable branches, just
merge the fix for now.
While it's fairly close to the 12 release window, the fact that 11
continues to perform JITed tuple deforming in these cases, that
there's still cases where we do so in 12, and the fact that the
performance regression can be sizable, weigh in favor of fixing it
now.
Author: Andres Freund
Discussion: https://postgr.es/m/20190927072053.njf6prdl3vb7y7qb@alap3.anarazel.de
Backpatch: 12-, where 675af5c01e297 was merged.
The code used the destination slot's natts where it intended to
use the source slot's natts. Adding an Assert shows that there
is no case in "make check-world" where these counts are different,
so maybe this is a harmless bug, but it's still a bug.
Takayuki Tsunakawa
Discussion: https://postgr.es/m/0A3221C70F24FB45833433255569204D1FD34C0E@G01JPEXMBYT05
In ad0bda5d24ea I changed the EvalPlanQual machinery to store
substitution tuples in slot, instead of using plain HeapTuples. The
main motivation for that was that using HeapTuples will be inefficient
for future tableams. But it turns out that that conversion was buggy
for non-locking rowmarks - the wrong tuple descriptor was used to
create the slot.
As a secondary issue 5db6df0c0 changed ExecLockRows() to begin EPQ
earlier, to allow to fetch the locked rows directly into the EPQ
slots, instead of having to copy tuples around. Unfortunately, as Tom
complained, that forces some expensive initialization to happen
earlier.
As a third issue, the test coverage for EPQ was clearly insufficient.
Fixing the first issue is unfortunately not trivial: Non-locked row
marks were fetched at the start of EPQ, and we don't have the type
information for the rowmarks available at that point. While we could
change that, it's not easy. It might be worthwhile to change that at
some point, but to fix this bug, it seems better to delay fetching
non-locking rowmarks when they're actually needed, rather than
eagerly. They're referenced at most once, and in cases where EPQ
fails, might never be referenced. Fetching them when needed also
increases locality a bit.
To be able to fetch rowmarks during execution, rather than
initialization, we need to be able to access the active EPQState, as
that contains necessary data. To do so move EPQ related data from
EState to EPQState, and, only for EStates creates as part of EPQ,
reference the associated EPQState from EState.
To fix the second issue, change EPQ initialization to allow use of
EvalPlanQualSlot() to be used before EvalPlanQualBegin() (but
obviously still requiring EvalPlanQualInit() to have been done).
As these changes made struct EState harder to understand, e.g. by
adding multiple EStates, significantly reorder the members, and add a
lot more comments.
Also add a few more EPQ tests, including one that fails for the first
issue above. More is needed.
Reported-By: yi huang
Author: Andres Freund
Reviewed-By: Tom Lane
Discussion:
https://postgr.es/m/CAHU7rYZo_C4ULsAx_LAj8az9zqgrD8WDd4hTegDTMM1LMqrBsg@mail.gmail.comhttps://postgr.es/m/24530.1562686693@sss.pgh.pa.us
Backpatch: 12-, where the EPQ changes were introduced
Commit bf6c614a2 rearranged the lookup of the comparison operators
needed in a hashed subplan, and in so doing, broke the cross-type
case: it caused the original LHS-vs-RHS operator to be used to compare
hash table entries too (which of course are all of the RHS type).
This leads to C functions being passed a Datum that is not of the
type they expect, with the usual hazards of crashes and unauthorized
server memory disclosure.
For the set of hashable cross-type operators present in v11 core
Postgres, this bug is nearly harmless on 64-bit machines, which
may explain why it escaped earlier detection. But it is a live
security hazard on 32-bit machines; and of course there may be
extensions that add more hashable cross-type operators, which
would increase the risk.
Reported by Andreas Seltenreich. Back-patch to v11 where the
problem came in.
Security: CVE-2019-10209
In 5f32b29c1819 I changed the creation of HashState.hashkeys to
actually use HashState as the parent (instead of HashJoinState, which
was incorrect, as they were executed below HashState), to fix the
problem of hashkeys expressions otherwise relying on slot types
appropriate for HashJoinState, rather than HashState as would be
correct. That reliance was only introduced in 12, which is why it
previously worked to use HashJoinState as the parent (although I'd be
unsurprised if there were problematic cases).
Unfortunately that's not a sufficient solution, because before this
commit, the to-be-hashed expressions referenced inner/outer as
appropriate for the HashJoin, not Hash. That didn't have obvious bad
consequences, because the slots containing the tuples were put into
ecxt_innertuple when hashing a tuple for HashState (even though Hash
doesn't have an inner plan).
There are less common cases where this can cause visible problems
however (rather than just confusion when inspecting such executor
trees). E.g. "ERROR: bogus varno: 65000", when explaining queries
containing a HashJoin where the subsidiary Hash node's hash keys
reference a subplan. While normally hashkeys aren't displayed by
EXPLAIN, if one of those expressions references a subplan, that
subplan may be printed as part of the Hash node - which then failed
because an inner plan was referenced, and Hash doesn't have that.
It seems quite possible that there's other broken cases, too.
Fix the problem by properly splitting the expression for the HashJoin
and Hash nodes at plan time, and have them reference the proper
subsidiary node. While other workarounds are possible, fixing this
correctly seems easy enough. It was a pretty ugly hack to have
ExecInitHashJoin put the expression into the already initialized
HashState, in the first place.
I decided to not just split inner/outer hashkeys inside
make_hashjoin(), but also to separate out hashoperators and
hashcollations at plan time. Otherwise we would have ended up having
two very similar loops, one at plan time and the other during executor
startup. The work seems to more appropriately belong to plan time,
anyway.
Reported-By: Nikita Glukhov, Alexander Korotkov
Author: Andres Freund
Reviewed-By: Tom Lane, in an earlier version
Discussion: https://postgr.es/m/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR+teQ_8tEXU8mxg@mail.gmail.com
Backpatch: 12-
These were introduced by pgindent due to fixe to broken
indentation (c.f. 8255c7a5eeba8). Previously the mis-indentation of
function prototypes was creatively used to reduce indentation in a few
places.
As that formatting only exists in master and REL_12_STABLE, it seems
better to fix it in both, rather than having some odd indentation in
v12 that somebody might copy for future patches or such.
Author: Andres Freund
Discussion: https://postgr.es/m/20190728013754.jwcbe5nfyt3533vx@alap3.anarazel.de
Backpatch: 12-
Since 15d8f8312 we assert that - and since 7ef04e4d2cb2, 4da597edf1
rely on - the slot type for an expression's
ecxt_{outer,inner,scan}tuple not changing, unless explicitly flagged
as such. That allows to either skip deforming (for a virtual tuple
slot) or optimize the code for JIT accelerated deforming
appropriately (for other known slot types).
This assumption was sometimes violated for grouping sets, when
nodeAgg.c internally uses tuplesorts, and the child node doesn't
return a TTSOpsMinimalTuple type slot. Detect that case, and flag that
the outer slot might not be "fixed".
It's probably worthwhile to optimize this further in the future, and
more granularly determine whether the slot is fixed. As we already
instantiate per-phase transition and equal expressions, we could
cheaply set the slot type appropriately for each phase. But that's a
separate change from this bugfix.
This commit does include a very minor optimization by avoiding to
create a slot for handling tuplesorts, if no such sorts are
performed. Previously we created that slot unnecessarily in the common
case of computing all grouping sets via hashing. The code looked too
confusing without that, as the conditions for needing a sort slot and
flagging that the slot type isn't fixed, are the same.
Reported-By: Ashutosh Sharma
Author: Andres Freund
Discussion: https://postgr.es/m/CAE9k0PmNaMD2oHTEAhRyxnxpaDaYkuBYkLa1dpOpn=RS0iS2AQ@mail.gmail.com
Backpatch: 12-, where the bug was introduced in 15d8f8312
After 277cb789836 ON CONFLICT ... SET ... RETURNING failed with
ERROR: virtual tuple table slot does not have system attributes
when taking the update path, as the slot used to insert into the
table (and then process RETURNING) was defined to be a virtual slot in
that commit. Virtual slots don't support system columns except for
tableoid and ctid, as the other system columns are AM dependent.
Fix that by using a slot of the table's type. Add tests for system
column accesses in ON CONFLICT ... RETURNING.
Reported-By: Roby, bisected to the relevant commit by Jeff Janes
Author: Andres Freund
Discussion: https://postgr.es/m/73436355-6432-49B1-92ED-1FE4F7E7E100@finefun.com.au
Backpatch: 12-, where the bug was introduced in 277cb789836
There were a number of issues in the recent commits which include typos,
code and comments mismatch, leftover function declarations. Fix them.
Reported-by: Alexander Lakhin
Author: Alexander Lakhin, Amit Kapila and Amit Langote
Reviewed-by: Amit Kapila
Discussion: https://postgr.es/m/ef0c0232-0c1d-3a35-63d4-0ebd06e31387@gmail.com
When this code was initially introduced in commit d1b7c1ff, the structure
used was SharedPlanStateInstrumentation, but later when it got changed to
Instrumentation structure in commit b287df70, we forgot to update the
comment.
Reported-by: Wu Fei
Author: Wu Fei
Reviewed-by: Amit Kapila
Backpatch-through: 9.6
Discussion: https://postgr.es/m/52E6E0843B9D774C8C73D6CF64402F0562215EB2@G08CNEXMBPEKD02.g08.fujitsu.local
We used the same slot to store a tuple from the index, and to store a
tuple from the table. That's not OK. It worked with the heap, because
heapam_getnextslot() stores a HeapTuple to the slot, and doesn't care how
large the tts_values/nulls arrays are. But when I played with a toy table
AM implementation that used a virtual tuple, it caused memory overruns.
In the passing, tidy up comments on the ioss_PscanLen fields.
86b85044e rewrote how COPY FROM works to allow multiple tuple buffers to
exist to once thus allowing multi-inserts to be used in more cases with
partitioned tables. That commit neglected to update the estate's
es_result_relation_info when flushing the insert buffer to the partition
making it possible for the index tuples to be added into an index on the
wrong partition.
Fix this and also add an Assert in ExecInsertIndexTuples to help ensure
that we never make this mistake again.
Reported-by: Haruka Takatsuka
Author: Ashutosh Sharma
Discussion: https://postgr.es/m/15832-b1bf336a4ee246b5@postgresql.org
Some of the wrapper functions didn't match the callback names. Many of
them due to staying "consistent" with historic naming of the wrapped
functionality. We decided that for most cases it's more important to
be for tableam to be consistent going forward, than with the past.
The one exception is beginscan/endscan/... because it'd have looked
odd to have systable_beginscan/endscan/... with a different naming
scheme, and changing the systable_* APIs would have caused way too
much churn (including breaking a lot of external users).
Author: Ashwin Agrawal, with some small additions by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CALfoeiugyrXZfX7n0ORCa4L-m834dzmaE8eFdbNR6PMpetU4Ww@mail.gmail.com
When there were duplicate columns in the hash key list, the array
sizes could be miscomputed, resulting in access off the end of the
array. Adjust the computation to ensure the array is always large
enough.
(I considered whether the duplicates could be removed in planning, but
I can't rule out the possibility that duplicate columns might have
different hash functions assigned. Simpler to just make sure it works
at execution time regardless.)
Bug apparently introduced in fc4b3dea2 as part of narrowing down the
tuples stored in the hashtable. Reported by Colm McHugh of Salesforce,
though I didn't use their patch. Backpatch back to version 10 where
the bug was introduced.
Discussion: https://postgr.es/m/CAFeeJoKKu0u+A_A9R9316djW-YW3-+Gtgvy3ju655qRHR3jtdA@mail.gmail.com
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.
Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
This code was still using the old style of forming a heap tuple rather
than using tuple slots. This would be less efficient if a non-heap
access method was used. And using tuple slots is actually quite a bit
faster when using heap as well.
Also add some test cases for generated columns with null values and
with varlena values. This lack of coverage was discovered while
working on this patch.
Discussion: https://www.postgresql.org/message-id/flat/20190331025744.ugbsyks7czfcoksd%40alap3.anarazel.de
For partial aggregation combine steps,
AggStatePerTrans->numTransInputs was set to the transition function's
number of inputs, rather than the combine function's number of
inputs (always 1).
That lead to partial aggregates with strict combine functions to
wrongly check for NOT NULL input as required by strictness. When the
aggregate wasn't exactly passed one argument, the strictness check was
either omitted (in the 0 args case) or too many arguments were
checked. In the latter case we'd read beyond the end of
FunctionCallInfoData->args (only in master).
AggStatePerTrans->numTransInputs actually has been wrong since since
9.6, where partial aggregates were added. But it turns out to not be
an active problem in 9.6 and 10, because numTransInputs wasn't used at
all for combine functions: Before c253b722f6 there simply was no NULL
check for the input to strict trans functions, and after that the
check was simply hardcoded for the right offset in fcinfo, as it's
done by code specific to combine functions.
In bf6c614a2f2 (11) the strictness check was generalized, with common
code doing the strictness checks for both plain and combine transition
functions, based on numTransInputs. For combine functions this lead to
not emitting an expression step to check for strict input in the 0
arguments case, and in the > 1 arguments case, we'd check too many
arguments.Due to the fact that the relevant fcinfo->isnull[2..] was
always zero-initialized (more or less by accident, by being part of
the AggStatePerTrans struct, which is palloc0'ed), there was no
observable damage in the latter case before a9c35cf85ca1f, we just
checked too many array elements.
Due to the changes in a9c35cf85ca1f, > 1 argument bug became visible,
because these days fcinfo is a) dynamically allocated without being
zeroed b) exactly the length required for the number of specified
arguments (hardcoded to 2 in this case).
This commit only contains a fairly minimal fix, setting numTransInputs
to a hardcoded 1 when building a pertrans for a combine function. It
seems likely that we'll want to clean this up further (e.g. the
arguments build_pertrans_for_aggref() aren't particularly meaningful
for combine functions). But the wrap date for 12 beta1 is coming up
fast, so it seems good to have a minimal fix in place.
Backpatch to 11. While AggStatePerTrans->numTransInputs was set
wrongly before that, the value was not used for combine functions.
Reported-By: Rajkumar Raghuwanshi
Diagnosed-By: Kyotaro Horiguchi, Jeevan Chalke, Andres Freund, David Rowley
Author: David Rowley, Kyotaro Horiguchi, Andres Freund
Discussion: https://postgr.es/m/CAKcux6=uZEyWyLw0N7HtR9OBc-sWEFeByEZC7t-KDf15FKxVew@mail.gmail.com