Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments. Clean up
as follows:
* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function. In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs. Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.
* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.
* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that. Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.
* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries. The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks. It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway. I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.
* Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.
* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.
* Lots of cleanup of documentation and missed comments. Re-order some
code additions into more logical places.
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.
Custom scan providers can use this in a similar way. Previously,
it was only possible for a custom scan provider to scan a single
relation. Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.
KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
This code relied on pointer equality to identify which restriction clauses
also appear in the indexquals (and, therefore, don't need to be applied as
simple filter conditions). That was okay once upon a time, years ago,
before we introduced the equivalence-class machinery. Now there's about a
50-50 chance that an equality clause appearing in the indexquals will be
the mirror image (commutator) of its mate in the restriction list. When
that happens, we'd erroneously think that the clause would be re-evaluated
at each visited row, and therefore inflate the cost estimate for the
indexscan by the clause's cost.
Add some logic to catch this case. It seems to me that it continues not to
be worthwhile to expend the extra predicate-proof work that createplan.c
will do on the finally-selected plan, but this case is common enough and
cheap enough to handle that we should do so.
This will make a small difference (about one cpu_operator_cost per row)
in simple cases; but in situations where there's an expensive function in
the indexquals, it can make a very large difference, as seen in recent
example from Jeff Janes.
This is a long-standing bug, but I'm hesitant to back-patch because of the
possibility of destabilizing plan choices that people may be happy with.
The previous coding in EXPLAIN always labeled a ModifyTable node with the
name of the target table affected by its first child plan. When originally
written, this was necessarily the parent table of the inheritance tree,
so everything was unconfusing. But when we added NO INHERIT constraints,
it became possible for the parent table to be deleted from the plan by
constraint exclusion while still leaving child tables present. This led to
the ModifyTable plan node being labeled with the first surviving child,
which was deemed confusing. Fix it by retaining the parent table's RT
index in a new field in ModifyTable.
Etsuro Fujita, reviewed by Ashutosh Bapat and myself
Ordinarily we can omit checking of a WHERE condition that matches a partial
index's condition, when we are using an indexscan on that partial index.
However, in SELECT FOR UPDATE we must include the "redundant" filter
condition in the plan so that it gets checked properly in an EvalPlanQual
recheck. The planner got this mostly right, but improperly omitted the
filter condition if the index in question was on an inheritance child
table. In READ COMMITTED mode, this could result in incorrectly returning
just-updated rows that no longer satisfy the filter condition.
The cause of the error is using get_parse_rowmark() when get_plan_rowmark()
is what should be used during planning. In 9.3 and up, also fix the same
mistake in contrib/postgres_fdw. It's currently harmless there (for lack
of inheritance support) but wrong is wrong, and the incorrect code might
get copied to someplace where it's more significant.
Report and fix by Kyotaro Horiguchi. Back-patch to all supported branches.
postgres_fdw would send query conditions involving system columns to the
remote server, even though it makes no effort to ensure that system
columns other than CTID match what the remote side thinks. tableoid,
in particular, probably won't match and might have some use in queries.
Hence, prevent sending conditions that include non-CTID system columns.
Also, create_foreignscan_plan neglected to check local restriction
conditions while determining whether to set fsSystemCol for a foreign
scan plan node. This again would bollix the results for queries that
test a foreign table's tableoid.
Back-patch the first fix to 9.3 where postgres_fdw was introduced.
Back-patch the second to 9.2. The code is probably broken in 9.1 as
well, but the patch doesn't apply cleanly there; given the weak state
of support for FDWs in 9.1, it doesn't seem worth fixing.
Etsuro Fujita, reviewed by Ashutosh Bapat, and somewhat modified by me
Make it work more like FDW plans do: instead of assuming that there are
expressions in a CustomScan plan node that the core code doesn't know
about, insist that all subexpressions that need planner attention be in
a "custom_exprs" list in the Plan representation. (Of course, the
custom plugin can break the list apart again at executor initialization.)
This lets us revert the parts of the patch that exposed setrefs.c and
subselect.c processing to the outside world.
Also revert the GetSpecialCustomVar stuff in ruleutils.c; that concept
may work in future, but it's far from fully baked right now.
Get rid of the pernicious entanglement between planner and executor headers
introduced by commit 0b03e5951bf0a1a8868db13f02049cf686a82165.
Also, rearrange the CustomFoo struct/typedef definitions so that all the
typedef names are seen as used by the compiler. Without this pgindent
will mess things up a bit, which is not so important perhaps, but it also
removes a bizarre discrepancy between the declaration arrangement used for
CustomExecMethods and that used for CustomScanMethods and
CustomPathMethods.
Clean up the commentary around ExecSupportsMarkRestore to reflect the
rather large change in its API.
Const-ify register_custom_path_provider's argument. This necessitates
casting away const in the function, but that seems better than forcing
callers of the function to do so (or else not const-ify their method
pointer structs, which was sort of the whole point).
De-export fix_expr_common. I don't like the exporting of fix_scan_expr
or replace_nestloop_params either, but this one surely has got little
excuse.
This allows extension modules to define their own methods for
scanning a relation, and get the core code to use them. It's
unclear as yet how much use this capability will find, but we
won't find out if we never commit it.
KaiGai Kohei, reviewed at various times and in various levels
of detail by Shigeru Hanada, Tom Lane, Andres Freund, Álvaro
Herrera, and myself.
The original coding of EquivalenceClasses didn't foresee that appendrel
child relations might themselves be appendrels; but this is possible for
example when a UNION ALL subquery scans a table with inheritance children.
The oversight led to failure to optimize ordering-related issues very well
for the grandchild tables. After some false starts involving explicitly
flattening the appendrel representation, we found that this could be fixed
easily by removing a few implicit assumptions about appendrel parent rels
not being children themselves.
Kyotaro Horiguchi and Tom Lane, reviewed by Noah Misch
We don't need make_restrictinfo_from_bitmapqual() anymore at all.
generate_bitmap_or_paths() doesn't need to be exported, and we can
drop its rather klugy restriction_only flag.
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry. The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others. This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.
This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.
Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).
The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does. There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST(). After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.
Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
The planner largely failed to consider the possibility that a
PlaceHolderVar's expression might contain a lateral reference to a Var
coming from somewhere outside the PHV's syntactic scope. We had a previous
report of a problem in this area, which I tried to fix in a quick-hack way
in commit 4da6439bd8553059766011e2a42c6e39df08717f, but Antonin Houska
pointed out that there were still some problems, and investigation turned
up other issues. This patch largely reverts that commit in favor of a more
thoroughly thought-through solution. The new theory is that a PHV's
ph_eval_at level cannot be higher than its original syntactic level. If it
contains lateral references, those don't change the ph_eval_at level, but
rather they create a lateral-reference requirement for the ph_eval_at join
relation. The code in joinpath.c needs to handle that.
Another issue is that createplan.c wasn't handling nested PlaceHolderVars
properly.
In passing, push knowledge of lateral-reference checks for join clauses
into join_clause_is_movable_to. This is mainly so that FDWs don't need
to deal with it.
This patch doesn't fix the original join-qual-placement problem reported by
Jeremy Evans (and indeed, one of the new regression test cases shows the
wrong answer because of that). But the PlaceHolderVar problems need to be
fixed before that issue can be addressed, so committing this separately
seems reasonable.
For simple views which are automatically updatable, this patch allows
the user to specify what level of checking should be done on records
being inserted or updated. For 'LOCAL CHECK', new tuples are validated
against the conditionals of the view they are being inserted into, while
for 'CASCADED CHECK' the new tuples are validated against the
conditionals for all views involved (from the top down).
This option is part of the SQL specification.
Dean Rasheed, reviewed by Pavel Stehule
When creating a sort to support a group by, we need to look up the
target entry in the target list by the resno using get_tle_by_resno().
This particular code-path didn't check the result prior to attempting
to dereference it, while all other callers did. While I can't see a
way for this usage of get_tle_by_resno() to fail (you can't ask for
a column to be sorted on which isn't included in the group by), it's
probably best to check that we didn't end up with a NULL somehow
anyway than risk the segfault.
I'm willing to back-patch this if others feel it's necessary, but my
guess is new features are what might tickle this rather than anything
existing.
Missing check spotted by the Coverity scanner.
This reverts the code changes in 50c137487c96e629e0e5372bb3d1b5f1a2f71a88,
which turned out to induce crashes and not completely fix the problem
anyway. That commit only considered single subqueries that were excluded
by constraint-exclusion logic, but actually the problem also exists for
subqueries that are appendrel members (ie part of a UNION ALL list). In
such cases we can't add a dummy subpath to the appendrel's AppendPath list
without defeating the logic that recognizes when an appendrel is completely
excluded. Instead, fix the problem by having setrefs.c scan the rangetable
an extra time looking for subqueries that didn't get into the plan tree.
(This approach depends on the 9.2 change that made set_subquery_pathlist
generate dummy paths for excluded single subqueries, so that the exclusion
behavior is the same for single subqueries and appendrel members.)
Note: it turns out that the appendrel form of the missed-permissions-checks
bug exists as far back as 8.4. However, since the practical effect of that
bug seems pretty minimal, consensus is to not attempt to fix it in the back
branches, at least not yet. Possibly we could back-port this patch once
it's gotten a reasonable amount of testing in HEAD. For the moment I'm
just going to revert the previous patch in 9.2.
A view defined as "select <something> where false" had the curious property
that the system wouldn't check whether users had the privileges necessary
to select from it. More generally, permissions checks could be skipped
for tables referenced in sub-selects or views that were proven empty by
constraint exclusion (although some quick testing suggests this seldom
happens in cases of practical interest). This happened because the planner
failed to include rangetable entries for such tables in the finished plan.
This was noticed in connection with erroneous handling of materialized
views, but actually the issue is quite unrelated to matviews. Therefore,
revert commit 200ba1667b3a8d7a9d559d2f05f83d209c9d8267 in favor of a more
direct test for the real problem.
Back-patch to 9.2 where the bug was introduced (by commit
7741dd6590073719688891898e85f0cb73453159).
The planner sometimes inserts Result nodes to perform column projections
(ie, arbitrary scalar calculations) above plan nodes that lack projection
logic of their own. However, we did that even if the lower plan node was
in fact producing the required column set already; which is a pretty common
case given the popularity of "SELECT * FROM ...". Measurements show that
the useless plan node adds non-negligible overhead, especially when there
are many columns in the result. So add a check to avoid inserting a Result
node unless there's something useful for it to do.
There are a couple of remaining places where unnecessary Result nodes
could get inserted, but they are (a) much less performance-critical,
and (b) coded in such a way that it's hard to avoid inserting a Result,
because the desired tlist is changed on-the-fly in subsequent logic.
We'll leave those alone for now.
Kyotaro Horiguchi; reviewed and further hacked on by Amit Kapila and
Tom Lane.
This patch adds the core-system infrastructure needed to support updates
on foreign tables, and extends contrib/postgres_fdw to allow updates
against remote Postgres servers. There's still a great deal of room for
improvement in optimization of remote updates, but at least there's basic
functionality there now.
KaiGai Kohei, reviewed by Alexander Korotkov and Laurenz Albe, and rather
heavily revised by Tom Lane.
The planner previously assumed that parameter Vars having the same absolute
query level, varno, and varattno could safely be assigned the same runtime
PARAM_EXEC slot, even though they might be different Vars appearing in
different subqueries. This was (probably) safe before the introduction of
CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can
be executed during execution of some other subquery, causing the lifespan
of Params at the same syntactic nesting level as the CTE to overlap with
use of the same slots inside the CTE. In 9.1 we created additional hazards
by using the same parameter-assignment technology for nestloop inner scan
parameters, but it was broken before that, as illustrated by the added
regression test.
To fix, restructure the planner's management of PlannerParamItems so that
items having different semantic lifespans are kept rigorously separated.
This will probably result in complex queries using more runtime PARAM_EXEC
slots than before, but the slots are cheap enough that this hardly matters.
Also, stop generating PlannerParamItems containing Params for subquery
outputs: all we really need to do is reserve the PARAM_EXEC slot number,
and that now only takes incrementing a counter. The planning code is
simpler and probably faster than before, as well as being more correct.
Per report from Vik Reykja.
These changes will mostly also need to be made in the back branches, but
I'm going to hold off on that until after 9.2.0 wraps.
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries. Notable changes:
* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.) Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.
* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization. We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.
* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.
* Assorted corner-case bug fixes.
There's probably still some bugs left, but this is a lot closer to being
real than it was before.
Re-allow subquery pullup for LATERAL subqueries, except when the subquery
is below an outer join and contains lateral references to relations outside
that outer join. If we pull up in such a case, we risk introducing lateral
cross-references into outer joins' ON quals, which is something the code is
entirely unprepared to cope with right now; and I'm not sure it'll ever be
worth coping with.
Support lateral refs in VALUES (this seems to be the only additional path
type that needs such support as a consequence of re-allowing subquery
pullup).
Put in a slightly hacky fix for joinpath.c's refusal to consider
parameterized join paths even when there cannot be any unparameterized
ones. This was causing "could not devise a query plan for the given query"
failures in queries involving more than two FROM items.
Put in an even more hacky fix for distribute_qual_to_rels() being unhappy
with join quals that contain references to rels outside their syntactic
scope; which is to say, disable that test altogether. Need to think about
how to preserve some sort of debugging cross-check here, while not
expending more cycles than befits a debugging cross-check.
This patch implements the standard syntax of LATERAL attached to a
sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM,
since set-returning function calls are expected to be one of the principal
use-cases.
The main change here is a rewrite of the mechanism for keeping track of
which relations are visible for column references while the FROM clause is
being scanned. The parser "namespace" lists are no longer lists of bare
RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE
pointer as well as some visibility-controlling flags. Aside from
supporting LATERAL correctly, this lets us get rid of the ancient hacks
that required rechecking subqueries and JOIN/ON and function-in-FROM
expressions for invalid references after they were initially parsed.
Invalid column references are now always correctly detected on sight.
In passing, remove assorted parser error checks that are now dead code by
virtue of our having gotten rid of add_missing_from, as well as some
comments that are obsolete for the same reason. (It was mainly
add_missing_from that caused so much fudging here in the first place.)
The planner support for this feature is very minimal, and will be improved
in future patches. It works well enough for testing purposes, though.
catversion bump forced due to new field in RangeTblEntry.
We made use of the ROWS estimate for set-returning functions used in FROM,
but not for those used in SELECT targetlists; which is a bit of an
oversight considering there are common usages that require the latter
approach. Improve that. (I had initially thought it might be worth
folding this into cost_qual_eval, but after investigation concluded that
that wouldn't be very helpful, so just do it separately.) Per complaint
from David Johnston.
Back-patch to 9.2, but not further, for fear of destabilizing plan choices
in existing releases.
setrefs.c failed to do "rtoffset" adjustment of Vars in RETURNING lists,
which meant they were left with the wrong varnos when the RETURNING list
was in a subquery. That was never possible before writable CTEs, of
course, but now it's broken. The executor fails to notice any problem
because ExecEvalVar just references the ecxt_scantuple for any normal
varno; but EXPLAIN breaks when the varno is wrong, as illustrated in a
recent complaint from Bartosz Dmytrak.
Since the eventual rtoffset of the subquery is not known at the time
we are preparing its plan node, the previous scheme of executing
set_returning_clause_references() at that time cannot handle this
adjustment. Fortunately, it turns out that we don't really need to do it
that way, because all the needed information is available during normal
setrefs.c execution; we just have to dig it out of the ModifyTable node.
So, do that, and get rid of the kluge of early setrefs processing of
RETURNING lists. (This is a little bit of a cheat in the case of inherited
UPDATE/DELETE, because we are not passing a "root" struct that corresponds
exactly to what the subplan was built with. But that doesn't matter, and
anyway this is less ugly than early setrefs processing was.)
Back-patch to 9.1, where the problem became possible to hit.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
In commit 57664ed25e5dea117158a2e663c29e60b3546e1c I tried to fix a bug
reported by Teodor Sigaev by making non-simple-Var output columns distinct
(by wrapping their expressions with dummy PlaceHolderVar nodes). This did
not work too well. Commit b28ffd0fcc583c1811e5295279e7d4366c3cae6c fixed
some ensuing problems with matching to child indexes, but per a recent
report from Claus Stadler, constraint exclusion of UNION ALL subqueries was
still broken, because constant-simplification didn't handle the injected
PlaceHolderVars well either. On reflection, the original patch was quite
misguided: there is no reason to expect that EquivalenceClass child members
will be distinct. So instead of trying to make them so, we should ensure
that we can cope with the situation when they're not.
Accordingly, this patch reverts the code changes in the above-mentioned
commits (though the regression test cases they added stay). Instead, I've
added assorted defenses to make sure that duplicate EC child members don't
cause any problems. Teodor's original problem ("MergeAppend child's
targetlist doesn't match MergeAppend") is addressed more directly by
revising prepare_sort_from_pathkeys to let the parent MergeAppend's sort
list guide creation of each child's sort list.
In passing, get rid of add_sort_column; as far as I can tell, testing for
duplicate sort keys at this stage is dead code. Certainly it doesn't
trigger often enough to be worth expending cycles on in ordinary queries.
And keeping the test would've greatly complicated the new logic in
prepare_sort_from_pathkeys, because comparing pathkey list entries against
a previous output array requires that we not skip any entries in the list.
Back-patch to 9.1, like the previous patches. The only known issue in
this area that wasn't caused by the ill-advised previous patches was the
MergeAppend planning failure, which of course is not relevant before 9.1.
It's possible that we need some of the new defenses against duplicate child
EC entries in older branches, but until there's some clear evidence of that
I'm going to refrain from back-patching further.
Further reflection shows that a single callback isn't very workable if we
desire to let FDWs generate multiple Paths, because that forces the FDW to
do all work necessary to generate a valid Plan node for each Path. Instead
split the former PlanForeignScan API into three steps: GetForeignRelSize,
GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking
the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain,
and it's substantially more flexible for complex FDWs.
Add an fdw_private field to RelOptInfo so that the new functions can save
state there rather than possibly having to recalculate information two or
three times.
In addition, we'd not thought through what would be needed to allow an FDW
to set up subexpressions of its choice for runtime execution. We could
treat ForeignScan.fdw_private as an executable expression but that seems
likely to break existing FDWs unnecessarily (in particular, it would
restrict the set of node types allowable in fdw_private to those supported
by expression_tree_walker). Instead, invent a separate field fdw_exprs
which will receive the postprocessing appropriate for expression trees.
(One field is enough since it can be a list of expressions; also, we assume
the corresponding expression state tree(s) will be held within fdw_state,
so we don't need to add anything to ForeignScanState.)
Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this
further as we continue to work on that patch, but to me it feels a lot
closer to being right now.
The original API specification only allowed an FDW to create a single
access path, which doesn't seem like a terribly good idea in hindsight.
Instead, move the responsibility for building the Path node and calling
add_path() into the FDW's PlanForeignScan function. Now, it can do that
more than once if appropriate. There is no longer any need for the
transient FdwPlan struct, so get rid of that.
Etsuro Fujita, Shigeru Hanada, Tom Lane
In commit 57664ed25e5dea117158a2e663c29e60b3546e1c, I made the planner
wrap non-simple-variable outputs of appendrel children (IOW, child SELECTs
of UNION ALL subqueries) inside PlaceHolderVars, in order to solve some
issues with EquivalenceClass processing. However, this means that any
upper-level WHERE clauses mentioning such outputs will now contain
PlaceHolderVars after they're pushed down into the appendrel child,
and that prevents indxpath.c from recognizing that they could be matched
to index expressions. To fix, add explicit stripping of PlaceHolderVars
from index operands, same as we have long done for RelabelType nodes.
Add a regression test covering both this and the plain-UNION case (which
is a totally different code path, but should also be able to do it).
Per bug #6416 from Matteo Beccati. Back-patch to 9.1, same as the
previous change.
This patch fixes the planner so that it can generate nestloop-with-
inner-indexscan plans even with one or more levels of joining between
the indexscan and the nestloop join that is supplying the parameter.
The executor was fixed to handle such cases some time ago, but the
planner was not ready. This should improve our plans in many situations
where join ordering restrictions formerly forced complete table scans.
There is probably a fair amount of tuning work yet to be done, because
of various heuristics that have been added to limit the number of
parameterized paths considered. However, we are not going to find out
what needs to be adjusted until the code gets some real-world use, so
it's time to get it in there where it can be tested easily.
Note API change for index AM amcostestimate functions. I'm not aware of
any non-core index AMs, but if there are any, they will need minor
adjustments.
In commit e2c2c2e8b1df7dfdb01e7e6f6191a569ce3c3195 I made use of nested
list structures to show which clauses went with which index columns, but
on reflection that's a data structure that only an old-line Lisp hacker
could love. Worse, it adds unnecessary complication to the many places
that don't much care which clauses go with which index columns. Revert
to the previous arrangement of flat lists of clauses, and instead add a
parallel integer list of column numbers. The places that care about the
pairing can chase both lists with forboth(), while the places that don't
care just examine one list the same as before.
The only real downside to this is that there are now two more lists that
need to be passed to amcostestimate functions in case they care about
column matching (which btcostestimate does, so not passing the info is not
an option). Rather than deal with 11-argument amcostestimate functions,
pass just the IndexPath and expect the functions to extract fields from it.
That gets us down to 7 arguments which is better than 11, and it seems
more future-proof against likely additions to the information we keep
about an index path.
It's potentially useful for an index to repeat the same indexable column
or expression in multiple index columns, if the columns have different
opclasses. (If they share opclasses too, the duplicate column is pretty
useless, but nonetheless we've allowed such cases since 9.0.) However,
the planner failed to cope with this, because createplan.c was relying on
simple equal() matching to figure out which index column each index qual
is intended for. We do have that information available upstream in
indxpath.c, though, so the fix is to not flatten the multi-level indexquals
list when putting it into an IndexPath. Then we can rely on the sublist
structure to identify target index columns in createplan.c. There's a
similar issue for index ORDER BYs (the KNNGIST feature), so introduce a
multi-level-list representation for that too. This adds a bit more
representational overhead, but we might more or less buy that back by not
having to search for matching index columns anymore in createplan.c;
likewise btcostestimate saves some cycles.
Per bug #6351 from Christian Rudolph. Likely symptoms include the "btree
index keys must be ordered by attribute" failure shown there, as well as
"operator MMMM is not a member of opfamily NNNN".
Although this is a pre-existing problem that can be demonstrated in 9.0 and
9.1, I'm not going to back-patch it, because the API changes in the planner
seem likely to break things such as index plugins. The corner cases where
this matters seem too narrow to justify possibly breaking things in a minor
release.
If we use a PlaceHolderVar from the outer relation in an inner indexscan,
we need to reference the PlaceHolderVar as such as the value to be passed
in from the outer relation. The previous code effectively tried to
reconstruct the PHV from its component expression, which doesn't work since
(a) the Vars therein aren't necessarily bubbled up far enough, and (b) it
would be the wrong semantics anyway because of the possibility that the PHV
is supposed to have gone to null at some point before the current join.
Point (a) led to "variable not found in subplan target list" planner
errors, but point (b) would have led to silently wrong answers.
Per report from Roger Niederland.
This commit changes index-only scans so that data is read directly from the
index tuple without first generating a faux heap tuple. The only immediate
benefit is that indexes on system columns (such as OID) can be used in
index-only scans, but this is necessary infrastructure if we are ever to
support index-only scans on expression indexes. The executor is now ready
for that, though the planner still needs substantial work to recognize
the possibility.
To do this, Vars in index-only plan nodes have to refer to index columns
not heap columns. I introduced a new special varno, INDEX_VAR, to mark
such Vars to avoid confusion. (In passing, this commit renames the two
existing special varnos to OUTER_VAR and INNER_VAR.) This allows
ruleutils.c to handle them with logic similar to what we use for subplan
reference Vars.
Since index-only scans are now fundamentally different from regular
indexscans so far as their expression subtrees are concerned, I also chose
to change them to have their own plan node type (and hence, their own
executor source file).
When a btree index contains all columns required by the query, and the
visibility map shows that all tuples on a target heap page are
visible-to-all, we don't need to fetch that heap page. This patch depends
on the previous patches that made the visibility map reliable.
There's a fair amount left to do here, notably trying to figure out a less
chintzy way of estimating the cost of an index-only scan, but the core
functionality seems ready to commit.
Robert Haas and Ibrar Ahmed, with some previous work by Heikki Linnakangas.
In commit c1d9579dd8bf3c921ca6bc2b62c40da6d25372e5, I changed things so
that the output of the Agg node that feeds the window functions would not
list any ungrouped Vars directly. Formerly, for example, the Agg tlist
might have included both "x" and "sum(x)", which is not really valid if
"x" isn't a grouping column. If we then had a window function ordering on
something like "sum(x) + 1", prepare_sort_from_pathkeys would find no exact
match for this in the Agg tlist, and would conclude that it must recompute
the expression. But it would break the expression down to just the Var
"x", which it would find in the tlist, and then rebuild the ORDER BY
expression using a reference to the subplan's "x" output. Now, after the
above-referenced changes, "x" isn't in the Agg tlist if it's not a grouping
column, so that prepare_sort_from_pathkeys fails with "could not find
pathkey item to sort", as reported by Bricklen Anderson.
The fix is to not break down Aggrefs into their component parts, but just
treat them as irreducible expressions to be sought in the subplan tlist.
This is definitely OK for the use with respect to window functions in
grouping_planner, since it just built the tlist being used on the same
basis. AFAICT it is safe for other uses too; most of the other call sites
couldn't encounter Aggrefs anyway.
Formerly, set_subquery_pathlist and other creators of plans for subqueries
saved only the rangetable and rowMarks lists from the lower-level
PlannerInfo. But there's no reason not to remember the whole PlannerInfo,
and indeed this turns out to simplify matters in a number of places.
The immediate reason for doing this was so that the subroot will still be
accessible when we're trying to extract column statistics out of an
already-planned subquery. But now that I've done it, it seems like a good
code-beautification effort in its own right.
I also chose to get rid of the transient subrtable and subrowmark fields in
SubqueryScan nodes, in favor of having setrefs.c look up the subquery's
RelOptInfo. That required changing all the APIs in setrefs.c to pass
PlannerInfo not PlannerGlobal, which was a large but quite mechanical
transformation.
One side-effect not foreseen at the beginning is that this finally broke
inheritance_planner's assumption that replanning the same subquery RTE N
times would necessarily give interchangeable results each time. That
assumption was always pretty risky, but now we really have to make a
separate RTE for each instance so that there's a place to carry the
separate subroots.
Regular aggregate functions in combination with, or within the arguments
of, window functions are OK per spec; they have the semantics that the
aggregate output rows are computed and then we run the window functions
over that row set. (Thus, this combination is not really useful unless
there's a GROUP BY so that more than one aggregate output row is possible.)
The case without GROUP BY could fail, as recently reported by Jeff Davis,
because sloppy construction of the Agg node's targetlist resulted in extra
references to possibly-ungrouped Vars appearing outside the aggregate
function calls themselves. See the added regression test case for an
example.
Fixing this requires modifying the API of flatten_tlist and its underlying
function pull_var_clause. I chose to make pull_var_clause's API for
aggregates identical to what it was already doing for placeholders, since
the useful behaviors turn out to be the same (error, report node as-is, or
recurse into it). I also tightened the error checking in this area a bit:
if it was ever valid to see an uplevel Var, Aggref, or PlaceHolderVar here,
that was a long time ago, so complain instead of ignoring them.
Backpatch into 9.1. The failure exists in 8.4 and 9.0 as well, but seeing
that it only occurs in a basically-useless corner case, it doesn't seem
worth the risks of changing a function API in a minor release. There might
be third-party code using pull_var_clause.