1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-28 11:44:57 +03:00
Commit Graph

280 Commits

Author SHA1 Message Date
Bruce Momjian
bd61a623ac Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
2013-01-01 17:15:01 -05:00
Tom Lane
72a4231f0c Fix planning of non-strict equivalence clauses above outer joins.
If a potential equivalence clause references a variable from the nullable
side of an outer join, the planner needs to take care that derived clauses
are not pushed to below the outer join; else they may use the wrong value
for the variable.  (The problem arises only with non-strict clauses, since
if an upper clause can be proven strict then the outer join will get
simplified to a plain join.)  The planner attempted to prevent this type
of error by checking that potential equivalence clauses aren't
outerjoin-delayed as a whole, but actually we have to check each side
separately, since the two sides of the clause will get moved around
separately if it's treated as an equivalence.  Bugs of this type can be
demonstrated as far back as 7.4, even though releases before 8.3 had only
a very ad-hoc notion of equivalence clauses.

In addition, we neglected to account for the possibility that such clauses
might have nonempty nullable_relids even when not outerjoin-delayed; so the
equivalence-class machinery lacked logic to compute correct nullable_relids
values for clauses it constructs.  This oversight was harmless before 9.2
because we were only using RestrictInfo.nullable_relids for OR clauses;
but as of 9.2 it could result in pushing constructed equivalence clauses
to incorrect places.  (This accounts for bug #7604 from Bill MacArthur.)

Fix the first problem by adding a new test check_equivalence_delay() in
distribute_qual_to_rels, and fix the second one by adding code in
equivclass.c and called functions to set correct nullable_relids for
generated clauses.  Although I believe the second part of this is not
currently necessary before 9.2, I chose to back-patch it anyway, partly to
keep the logic similar across branches and partly because it seems possible
we might find other reasons why we need valid values of nullable_relids in
the older branches.

Add regression tests illustrating these problems.  In 9.0 and up, also
add test cases checking that we can push constants through outer joins,
since we've broken that optimization before and I nearly broke it again
with an overly simplistic patch for this problem.
2012-10-18 12:30:10 -04:00
Tom Lane
4da6439bd8 Fix mark_placeholder_maybe_needed to handle LATERAL references.
If a PlaceHolderVar contains a pulled-up LATERAL reference, its minimum
possible evaluation level might be higher in the join tree than its
original syntactic location.  That in turn affects the ph_needed level for
any contained PlaceHolderVars (that is, those PHVs had better propagate up
the join tree at least to the evaluation level of the outer PHV).  We got
this mostly right, but mark_placeholder_maybe_needed() failed to account
for the effect, and in consequence could leave the inner PHVs with
ph_may_need less than what their ultimate ph_needed value will be.  That's
bad because it could lead to failure to select a join order that will allow
evaluation of the inner PHV at a valid location.  Fix that, and add an
Assert that checks that we don't ever set ph_needed to more than
ph_may_need.
2012-09-01 13:56:46 -04:00
Tom Lane
c97a547a4a Partially restore qual scope checks in distribute_qual_to_rels().
The LATERAL implementation is now basically complete, and I still don't
see a cost-effective way to make an exact qual scope cross-check in the
presence of LATERAL.  However, I did add a PlannerInfo.hasLateralRTEs flag
along the way, so it's easy to make the check only when not hasLateralRTEs.
That seems to still be useful, and it beats having no check at all.
2012-08-31 18:57:12 -04:00
Tom Lane
9ff79b9d4e Fix up planner infrastructure to support LATERAL properly.
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries.  Notable changes:

* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.)  Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.

* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization.  We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.

* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.

* Assorted corner-case bug fixes.

There's probably still some bugs left, but this is a lot closer to being
real than it was before.
2012-08-26 22:50:23 -04:00
Tom Lane
084a29c94f Another round of planner fixes for LATERAL.
Formerly, subquery pullup had no need to examine other entries in the range
table, since they could not contain any references to the subquery being
pulled up.  That's no longer true with LATERAL, so now we need to be able
to visit rangetable subexpressions to replace Vars referencing the
pulled-up subquery.  Also, this means that extract_lateral_references must
be unsurprised at encountering lateral PlaceHolderVars, since such might be
created when pulling up a subquery that's underneath an outer join with
respect to the lateral reference.
2012-08-18 14:10:17 -04:00
Tom Lane
c1774d2c81 More fixes for planner's handling of LATERAL.
Re-allow subquery pullup for LATERAL subqueries, except when the subquery
is below an outer join and contains lateral references to relations outside
that outer join.  If we pull up in such a case, we risk introducing lateral
cross-references into outer joins' ON quals, which is something the code is
entirely unprepared to cope with right now; and I'm not sure it'll ever be
worth coping with.

Support lateral refs in VALUES (this seems to be the only additional path
type that needs such support as a consequence of re-allowing subquery
pullup).

Put in a slightly hacky fix for joinpath.c's refusal to consider
parameterized join paths even when there cannot be any unparameterized
ones.  This was causing "could not devise a query plan for the given query"
failures in queries involving more than two FROM items.

Put in an even more hacky fix for distribute_qual_to_rels() being unhappy
with join quals that contain references to rels outside their syntactic
scope; which is to say, disable that test altogether.  Need to think about
how to preserve some sort of debugging cross-check here, while not
expending more cycles than befits a debugging cross-check.
2012-08-12 16:01:26 -04:00
Tom Lane
5ebaaa4944 Implement SQL-standard LATERAL subqueries.
This patch implements the standard syntax of LATERAL attached to a
sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM,
since set-returning function calls are expected to be one of the principal
use-cases.

The main change here is a rewrite of the mechanism for keeping track of
which relations are visible for column references while the FROM clause is
being scanned.  The parser "namespace" lists are no longer lists of bare
RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE
pointer as well as some visibility-controlling flags.  Aside from
supporting LATERAL correctly, this lets us get rid of the ancient hacks
that required rechecking subqueries and JOIN/ON and function-in-FROM
expressions for invalid references after they were initially parsed.
Invalid column references are now always correctly detected on sight.

In passing, remove assorted parser error checks that are now dead code by
virtue of our having gotten rid of add_missing_from, as well as some
comments that are obsolete for the same reason.  (It was mainly
add_missing_from that caused so much fudging here in the first place.)

The planner support for this feature is very minimal, and will be improved
in future patches.  It works well enough for testing purposes, though.

catversion bump forced due to new field in RangeTblEntry.
2012-08-07 19:02:54 -04:00
Bruce Momjian
927d61eeff Run pgindent on 9.2 source tree in preparation for first 9.3
commit-fest.
2012-06-10 15:20:04 -04:00
Tom Lane
5b7b5518d0 Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate.  We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.

In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage.  This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.

To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing.  This is required at both base scans and joins.  It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree.  Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:53:47 -04:00
Bruce Momjian
e126958c2e Update copyright notices for year 2012. 2012-01-01 18:01:58 -05:00
Bruce Momjian
6416a82a62 Remove unnecessary #include references, per pgrminclude script. 2011-09-01 10:04:27 -04:00
Tom Lane
77ba232564 Fix nested PlaceHolderVar expressions that appear only in targetlists.
A PlaceHolderVar's expression might contain another, lower-level
PlaceHolderVar.  If the outer PlaceHolderVar is used, the inner one
certainly will be also, and so we have to make sure that both of them get
into the placeholder_list with correct ph_may_need values during the
initial pre-scan of the query (before deconstruct_jointree starts).
We did this correctly for PlaceHolderVars appearing in the query quals,
but overlooked the issue for those appearing in the top-level targetlist;
with the result that nested placeholders referenced only in the targetlist
did not work correctly, as illustrated in bug #6154.

While at it, add some error checking to find_placeholder_info to ensure
that we don't try to create new placeholders after it's too late to do so;
they have to all be created before deconstruct_jointree starts.

Back-patch to 8.4 where the PlaceHolderVar mechanism was introduced.
2011-08-09 00:50:07 -04:00
Tom Lane
c1d9579dd8 Avoid listing ungrouped Vars in the targetlist of Agg-underneath-Window.
Regular aggregate functions in combination with, or within the arguments
of, window functions are OK per spec; they have the semantics that the
aggregate output rows are computed and then we run the window functions
over that row set.  (Thus, this combination is not really useful unless
there's a GROUP BY so that more than one aggregate output row is possible.)
The case without GROUP BY could fail, as recently reported by Jeff Davis,
because sloppy construction of the Agg node's targetlist resulted in extra
references to possibly-ungrouped Vars appearing outside the aggregate
function calls themselves.  See the added regression test case for an
example.

Fixing this requires modifying the API of flatten_tlist and its underlying
function pull_var_clause.  I chose to make pull_var_clause's API for
aggregates identical to what it was already doing for placeholders, since
the useful behaviors turn out to be the same (error, report node as-is, or
recurse into it).  I also tightened the error checking in this area a bit:
if it was ever valid to see an uplevel Var, Aggref, or PlaceHolderVar here,
that was a long time ago, so complain instead of ignoring them.

Backpatch into 9.1.  The failure exists in 8.4 and 9.0 as well, but seeing
that it only occurs in a basically-useless corner case, it doesn't seem
worth the risks of changing a function API in a minor release.  There might
be third-party code using pull_var_clause.
2011-07-12 18:24:39 -04:00
Bruce Momjian
bf50caf105 pgindent run before PG 9.1 beta 1. 2011-04-10 11:42:00 -04:00
Tom Lane
b310b6e31c Revise collation derivation method and expression-tree representation.
All expression nodes now have an explicit output-collation field, unless
they are known to only return a noncollatable data type (such as boolean
or record).  Also, nodes that can invoke collation-aware functions store
a separate field that is the collation value to pass to the function.
This avoids confusion that arises when a function has collatable inputs
and noncollatable output type, or vice versa.

Also, replace the parser's on-the-fly collation assignment method with
a post-pass over the completed expression tree.  This allows us to use
a more complex (and hopefully more nearly spec-compliant) assignment
rule without paying for it in extra storage in every expression node.

Fix assorted bugs in the planner's handling of collations by making
collation one of the defining properties of an EquivalenceClass and
by converting CollateExprs into discardable RelabelType nodes during
expression preprocessing.
2011-03-19 20:30:08 -04:00
Bruce Momjian
5d950e3b0c Stamp copyrights for year 2011. 2011-01-01 13:18:15 -05:00
Tom Lane
f4e4b32743 Support RIGHT and FULL OUTER JOIN in hash joins.
This is advantageous first because it allows us to hash the smaller table
regardless of the outer-join type, and second because hash join can be more
flexible than merge join in dealing with arbitrary join quals in a FULL
join.  For merge join all the join quals have to be mergejoinable, but hash
join will work so long as there's at least one hashjoinable qual --- the
others can be any condition.  (This is true essentially because we don't
keep per-inner-tuple match flags in merge join, while hash join can do so.)

To do this, we need a has-it-been-matched flag for each tuple in the
hashtable, not just one for the current outer tuple.  The key idea that
makes this practical is that we can store the match flag in the tuple's
infomask, since there are lots of bits there that are of no interest for a
MinimalTuple.  So we aren't increasing the size of the hashtable at all for
the feature.

To write this without turning the hash code into even more of a pile of
spaghetti than it already was, I rewrote ExecHashJoin in a state-machine
style, similar to ExecMergeJoin.  Other than that decision, it was pretty
straightforward.
2010-12-30 20:26:08 -05:00
Tom Lane
186cbbda8f Provide hashing support for arrays.
The core of this patch is hash_array() and associated typcache
infrastructure, which works just about exactly like the existing support
for array comparison.

In addition I did some work to ensure that the planner won't think that an
array type is hashable unless its element type is hashable, and similarly
for sorting.  This includes adding a datatype parameter to op_hashjoinable
and op_mergejoinable, and adding an explicit "hashable" flag to
SortGroupClause.  The lack of a cross-check on the element type was a
pre-existing bug in mergejoin support --- but it didn't matter so much
before, because if you couldn't sort the element type there wasn't any good
alternative to failing anyhow.  Now that we have the alternative of hashing
the array type, there are cases where we can avoid a failure by being picky
at the planner stage, so it's time to be picky.

The issue of exactly how to combine the per-element hash values to produce
an array hash is still open for discussion, but the rest of this is pretty
solid, so I'll commit it as-is.
2010-10-30 21:56:11 -04:00
Tom Lane
14231a41a9 Avoid creation of useless EquivalenceClasses during planning.
Zoltan Boszormenyi exhibited a test case in which planning time was
dominated by construction of EquivalenceClasses and PathKeys that had no
actual relevance to the query (and in fact got discarded immediately).
This happened because we generated PathKeys describing the sort ordering of
every index on every table in the query, and only after that checked to see
if the sort ordering was relevant.  The EC/PK construction code is O(N^2)
in the number of ECs, which is all right for the intended number of such
objects, but it gets out of hand if there are ECs for lots of irrelevant
indexes.

To fix, twiddle the handling of mergeclauses a little bit to ensure that
every interesting EC is created before we begin path generation.  (This
doesn't cost anything --- in fact I think it's a bit cheaper than before
--- since we always eventually created those ECs anyway.)  Then, if an
index column can't be found in any pre-existing EC, we know that that sort
ordering is irrelevant for the query.  Instead of creating a useless EC,
we can just not build a pathkey for the index column in the first place.
The index will still be considered if it's useful for non-order-related
reasons, but we will think of its output as unsorted.
2010-10-29 11:52:50 -04:00
Tom Lane
eb22950510 Fix PlaceHolderVar mechanism's interaction with outer joins.
The point of a PlaceHolderVar is to allow a non-strict expression to be
evaluated below an outer join, after which its value bubbles up like a Var
and can be forced to NULL when the outer join's semantics require that.
However, there was a serious design oversight in that, namely that we
didn't ensure that there was actually a correct place in the plan tree
to evaluate the placeholder :-(.  It may be necessary to delay evaluation
of an outer join to ensure that a placeholder that should be evaluated
below the join can be evaluated there.  Per recent bug report from Kirill
Simonov.

Back-patch to 8.4 where the PlaceHolderVar mechanism was introduced.
2010-09-28 14:19:00 -04:00
Magnus Hagander
9f2e211386 Remove cvs keywords from all files. 2010-09-20 22:08:53 +02:00
Bruce Momjian
65e806cba1 pgindent run for 9.0 2010-02-26 02:01:40 +00:00
Bruce Momjian
0239800893 Update copyright for the year 2010. 2010-01-02 16:58:17 +00:00
Tom Lane
9f2ee8f287 Re-implement EvalPlanQual processing to improve its performance and eliminate
a lot of strange behaviors that occurred in join cases.  We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries.  If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row.  The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.

Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested.  To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param.  Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.

This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE.  This is needed to avoid the
duplicate-output-tuple problem.  It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
2009-10-26 02:26:45 +00:00
Tom Lane
b2c51e6eba Fix another semijoin-ordering bug. We already knew that we couldn't
reorder a semijoin into or out of the righthand side of another semijoin,
but actually it doesn't work to reorder it into or out of the righthand
side of a left or antijoin, either.  Per bug #4906 from Mathieu Fenniak.

This was sloppy thinking on my part.  This identity does work:

	( A left join B on (Pab) ) semijoin C on (Pac)
==
	( A semijoin C on (Pac) ) left join B on (Pab)

but I failed to see that that doesn't mean this does:

	( A left join B on (Pab) ) semijoin C on (Pbc)
!=
	A left join ( B semijoin C on (Pbc) ) on (Pab)
2009-07-21 02:02:44 +00:00
Bruce Momjian
d747140279 8.4 pgindent run, with new combined Linux/FreeBSD/MinGW typedef list
provided by Andrew.
2009-06-11 14:49:15 +00:00
Tom Lane
fdd48b1852 Ooops ... make_outerjoininfo wasn't actually enforcing the join order
restrictions specified for semijoins in optimizer/README, to wit that
you can't reassociate outer joins into or out of the RHS of a semijoin.
Per report from Heikki.
2009-05-07 20:13:09 +00:00
Tom Lane
1f36feceb0 Tweak distribute_qual_to_rels so that when we decide a pseudoconstant qual
can be pushed to the top of the join tree, we update both the relids and
qualscope variables to keep them in sync.  This prevents a possible later
failure of an Assert clause, and affects nothing else since qualscope isn't
used later except for that Assert.  At the moment the Assert shouldn't be
reachable when we've pushed the qual up; but this is cheap insurance, and
it's more sensible anyway in terms of the overall logic of the routine.
Per analysis of a bug report from Stefan Huehner.

I'm not back-patching this since it's just future-proofing; but if anyone
gets tempted to change check_outerjoin_delay again in the back branches,
this might be needed.
2009-05-06 20:31:18 +00:00
Tom Lane
1d97c19a0f Fix estimate_num_groups() to not fail on PlaceHolderVars, per report from
Stefan Kaltenbrunner.  The most reasonable behavior (at least for the near
term) seems to be to ignore the PlaceHolderVar and examine its argument
instead.  In support of this, change the API of pull_var_clause() to allow
callers to request recursion into PlaceHolderVars.  Currently
estimate_num_groups() is the only customer for that behavior, but where
there's one there may be others.
2009-04-19 19:46:33 +00:00
Tom Lane
d7a6a04dc7 Fix planner to restore its previous level of intelligence about pushing
constants through full joins, as in

	select * from tenk1 a full join tenk1 b using (unique1)
	where unique1 = 42;

which should generate a fairly cheap plan where we apply the constraint
unique1 = 42 in each relation scan.  This had been broken by my patch of
2008-06-27, which is now reverted in favor of a more invasive but hopefully
less incorrect approach.  That patch was meant to prevent incorrect extraction
of OR'd indexclauses from OR conditions above an outer join.  To do that
correctly we need more information than the outerjoin_delay flag can provide,
so add a nullable_relids field to RestrictInfo that records exactly which
relations are nulled by outer joins that are underneath a particular qual
clause.  A side benefit is that we can make the test in create_or_index_quals
more specific: it is now smart enough to extract an OR'd indexclause into the
outer side of an outer join, even though it must not do so in the inner side.
The old coding couldn't distinguish these cases so it could not do either.
2009-04-16 20:42:16 +00:00
Tom Lane
75c85bd199 Tighten up join ordering rules to account for recent more-careful analysis
of the associativity of antijoins.  Also improve optimizer/README discussion
of outer join ordering rules.
2009-02-27 22:41:38 +00:00
Tom Lane
e549722a8b Get rid of the rather fuzzily defined FlattenedSubLink node type in favor of
making pull_up_sublinks() construct a full-blown JoinExpr tree representation
of IN/EXISTS SubLinks that it is able to convert to semi or anti joins.
This makes pull_up_sublinks() a shade more complex, but the gain in semantic
clarity is worth it.  I still have more to do in this area to address the
previously-discussed problems, but this commit in itself fixes at least one
bug in HEAD, as shown by added regression test case.
2009-02-25 03:30:38 +00:00
Tom Lane
7920ed389c Simplify overcomplicated (and overly restrictive) test to see whether an
IS NULL condition is rendered redundant by detection of an antijoin.
If we know that a join is an antijoin, then *any* Var coming out of its
righthand side must be NULL, not only the joining column(s).  Also,
it's still gonna be null after being passed up through higher joins,
whether they're outer joins or not.  I was misled by a faulty analogy
to reduce_outer_joins() in the original coding.  But consider

select * from a left join b on a.x = b.y where b.y is null and b.z is null;

The first IS NULL condition justifies deciding that the join is an antijoin
(if the = is strict) and then the second one is just plain redundant.
2009-02-20 00:01:03 +00:00
Bruce Momjian
511db38ace Update copyright for 2009. 2009-01-01 17:24:05 +00:00
Tom Lane
8309d006cb Switch the planner over to treating qualifications of a JOIN_SEMI join as
though it is an inner rather than outer join type.  This essentially means
that we don't bother to separate "pushed down" qual conditions from actual
join quals at a semijoin plan node; which is okay because the restrictions of
SQL syntax make it impossible to have a pushed-down qual that references the
inner side of a semijoin.  This allows noticeably better optimization of
IN/EXISTS cases than we had before, since the equivalence-class machinery can
now use those quals.  Also fix a couple of other mistakes that had essentially
disabled the ability to unique-ify the inner relation and then join it to just
a subset of the left-hand relations.  An example case using the regression
database is

select * from tenk1 a, tenk1 b
where (a.unique1,b.unique2) in (select unique1,unique2 from tenk1 c);

which is planned reasonably well by 8.3 and earlier but had been forcing a
cartesian join of a/b in CVS HEAD.
2008-11-22 22:47:06 +00:00
Tom Lane
aa0fb53016 Be a little smarter about qual handling for semi-joins: a qual that mentions
only the outer side can be pushed down rather than having to be evaluated
at the join.
2008-10-25 19:51:32 +00:00
Tom Lane
e6ae3b5dbf Add a concept of "placeholder" variables to the planner. These are variables
that represent some expression that we desire to compute below the top level
of the plan, and then let that value "bubble up" as though it were a plain
Var (ie, a column value).

The immediate application is to allow sub-selects to be flattened even when
they are below an outer join and have non-nullable output expressions.
Formerly we couldn't flatten because such an expression wouldn't properly
go to NULL when evaluated above the outer join.  Now, we wrap it in a
PlaceHolderVar and arrange for the actual evaluation to occur below the outer
join.  When the resulting Var bubbles up through the join, it will be set to
NULL if necessary, yielding the correct results.  This fixes a planner
limitation that's existed since 7.1.

In future we might want to use this mechanism to re-introduce some form of
Hellerstein's "expensive functions" optimization, ie place the evaluation of
an expensive function at the most suitable point in the plan tree.
2008-10-21 20:42:53 +00:00
Tom Lane
19e34b6239 Improve sublink pullup code to handle ANY/EXISTS sublinks that are at top
level of a JOIN/ON clause, not only at top level of WHERE.  (However, we
can't do this in an outer join's ON clause, unless the ANY/EXISTS refers
only to the nullable side of the outer join, so that it can effectively
be pushed down into the nullable side.)  Per request from Kevin Grittner.

In passing, fix a bug in the initial implementation of EXISTS pullup:
it would Assert if the EXIST's WHERE clause used a join alias variable.
Since we haven't yet flattened join aliases when this transformation
happens, it's necessary to include join relids in the computed set of
RHS relids.
2008-08-17 01:20:00 +00:00
Tom Lane
e006a24ad1 Implement SEMI and ANTI joins in the planner and executor. (Semijoins replace
the old JOIN_IN code, but antijoins are new functionality.)  Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively.  Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins.  Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo".  With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation.  That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch.  So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
2008-08-14 18:48:00 +00:00
Tom Lane
dcc2334736 Consider a clause to be outerjoin_delayed if it references the nullable side
of any lower outer join, even if it also references the non-nullable side and
so could not get pushed below the outer join anyway.  We need this in case
the clause is an OR clause: if it doesn't get marked outerjoin_delayed,
create_or_index_quals() could pull an indexable restriction for the nullable
side out of it, leading to wrong results as demonstrated by today's bug
report from toruvinn.  (See added regression test case for an example.)

In principle this has been wrong for quite a while.  In practice I don't
think any branch before 8.3 can really show the failure, because
create_or_index_quals() will only pull out indexable conditions, and before
8.3 those were always strict.  So though we might have improperly generated
null-extended rows in the outer join, they'd get discarded from the result
anyway.  The gating factor that makes the failure visible is that 8.3
considers "col IS NULL" to be indexable.  Hence I'm not going to risk
back-patching further than 8.3.
2008-06-27 20:54:37 +00:00
Tom Lane
6b73d7e567 Fix an oversight I made in a cleanup patch over a year ago:
eval_const_expressions needs to be passed the PlannerInfo ("root") structure,
because in some cases we want it to substitute values for Param nodes.
(So "constant" is not so constant as all that ...)  This mistake partially
disabled optimization of unnamed extended-Query statements in 8.3: in
particular the LIKE-to-indexscan optimization would never be applied if the
LIKE pattern was passed as a parameter, and constraint exclusion depending
on a parameter value didn't work either.
2008-04-01 00:48:33 +00:00
Tom Lane
6a6522529f Fix some planner issues found while investigating Kevin Grittner's report
of poorer planning in 8.3 than 8.2:

1. After pushing a constant across an outer join --- ie, given
"a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is
sort of equal to 42, in the sense that we needn't fetch any b rows where
it isn't 42 --- loop to see if any additional deductions can be made.
Previous releases did that by recursing, but I had mistakenly thought that
this was no longer necessary given the EquivalenceClass machinery.

2. Allow pushing constants across outer join conditions even if the
condition is outerjoin_delayed due to a lower outer join.  This is safe
as long as the condition is strict and we re-test it at the upper join.

3. Keep the outer-join clause even if we successfully push a constant
across it.  This is *necessary* in the outerjoin_delayed case, but
even in the simple case, it seems better to do this to ensure that the
join search order heuristics will consider the join as reasonable to
make.  Mark such a clause as having selectivity 1.0, though, since it's
not going to eliminate very many rows after application of the constant
condition.

4. Tweak have_relevant_eclass_joinclause to report that two relations
are joinable when they have vars that are equated to the same constant.
We won't actually generate any joinclause from such an EquivalenceClass,
but again it seems that in such a case it's a good idea to consider
the join as worth costing out.

5. Fix a bug in select_mergejoin_clauses that was exposed by these
changes: we have to reject candidate mergejoin clauses if either side was
equated to a constant, because we can't construct a canonical pathkey list
for such a clause.  This is an implementation restriction that might be
worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 20:42:29 +00:00
Bruce Momjian
9098ab9e32 Update copyrights in source tree to 2008. 2008-01-01 19:46:01 +00:00
Bruce Momjian
fdf5a5efb7 pgindent run for 8.3. 2007-11-15 21:14:46 +00:00
Tom Lane
3ef18797b8 Fix an error in make_outerjoininfo introduced by my patch of 30-Aug: the code
neglected to test whether an outer join's join-condition actually refers to
the lower outer join it is looking at.  (The comment correctly described what
was supposed to happen, but the code didn't do it...)  This often resulted in
adding an unnecessary constraint on the join order of the two outer joins,
which was bad enough.  However, it also seems to expose a performance
problem in an older patch (from 15-Feb): once we've decided that there is a
join ordering constraint, we will start trying clauseless joins between every
combination of rels within the constraint, which pointlessly eats up lots of
time and space if there are numerous rels below the outer join.  That probably
needs to be revisited :-(.  Per gripe from Jakub Ouhrabka.
2007-10-24 20:54:27 +00:00
Tom Lane
89db887b1e Keep the planner from failing on "WHERE false AND something IN (SELECT ...)".
eval_const_expressions simplifies this to just "WHERE false", but we have
already done pull_up_IN_clauses so the IN join will be done, or at least
planned, anyway.  The trouble case comes when the sub-SELECT is itself a join
and we decide to implement the IN by unique-ifying the sub-SELECT outputs:
with no remaining reference to the output Vars in WHERE, we won't have
propagated the Vars up to the upper join point, leading to "variable not found
in subplan target lists" error.  Fix by adding an extra scan of in_info_list
and forcing all Vars mentioned therein to be propagated up to the IN join
point.  Per bug report from Miroslav Sulc.
2007-10-04 20:44:47 +00:00
Tom Lane
b4c806faa8 Rewrite make_outerjoininfo's construction of min_lefthand and min_righthand
sets for outer joins, in the light of bug #3588 and additional thought and
experimentation.  The original methodology was fatally flawed for nests of
more than two outer joins: it got the relationships between adjacent joins
right, but didn't always come to the right conclusions about whether a join
could be interchanged with one two or more levels below it.  This was largely
caused by a mistaken idea that we should use the min_lefthand + min_righthand
sets of a sub-join as the minimum left or right input set of an upper join
when we conclude that the sub-join can't commute with the upper one.  If
there's a still-lower join that the sub-join *can* commute with, this method
led us to think that that one could commute with the topmost join; which it
can't.  Another problem (not directly connected to bug #3588) was that
make_outerjoininfo's processing-order-dependent method for enforcing outer
join identity #3 didn't work right: if we decided that join A could safely
commute with lower join B, we dropped all information about sub-joins under B
that join A could perhaps not safely commute with, because we removed B's
entire min_righthand from A's.

To fix, make an explicit computation of all inner join combinations that occur
below an outer join, and add to that the full syntactic relsets of any lower
outer joins that we determine it can't commute with.  This method gives much
more direct enforcement of the outer join rearrangement identities, and it
turns out not to cost a lot of additional bookkeeping.

Thanks to Richard Harris for the bug report and test case.
2007-08-31 01:44:06 +00:00
Tom Lane
11086f2f2b Repair planner bug introduced in 8.2 by ability to rearrange outer joins:
in cases where a sub-SELECT inserts a WHERE clause between two outer joins,
that clause may prevent us from re-ordering the two outer joins.  The code
was considering only the joins' own ON-conditions in determining reordering
safety, which is not good enough.  Add a "delay_upper_joins" flag to
OuterJoinInfo to flag that we have detected such a clause and higher-level
outer joins shouldn't be permitted to commute with this one.  (This might
seem overly coarse, but given the current rules for OJ reordering, it's
sufficient AFAICT.)

The failure case is actually pretty narrow: it needs a WHERE clause within
the RHS of a left join that checks the RHS of a lower left join, but is not
strict for that RHS (else we'd have simplified the lower join to a plain
join).  Even then no failure will be manifest unless the planner chooses to
rearrange the join order.

Per bug report from Adam Terrey.
2007-05-22 23:23:58 +00:00
Tom Lane
8249409bc1 Adjust the definition of is_pushed_down so that it's always true for INNER
JOIN quals, just like WHERE quals, even if they reference every one of the
join's relations.  Now that we can reorder outer and inner joins, it's
possible for such a qual to end up being assigned to an outer join plan node,
and we mustn't have it treated as a join qual rather than a filter qual for
the node.  (If it were, the join could produce null-extended rows that it
shouldn't.)  Per bug report from Pelle Johansson.
2007-02-16 20:57:19 +00:00