This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
reduce_outer_joins() mistakenly treated a semijoin like a left join for
purposes of deciding whether not-null constraints created by the join's
quals could be passed down into the join's left-hand side (possibly
resulting in outer-join simplification there). Actually, semijoin works
like inner join for this purpose, ie, we do not need to see any rows that
can't possibly satisfy the quals. Hence, two-line fix to treat semi and
inner joins alike. Per observation by Andres Freund about a performance
gripe from Yazan Suleiman.
Back-patch to 8.4, since this oversight has been there since the current
handling of semijoins was implemented.
This reverts commit d1001a78ce of 2010-12-05,
which was broken as reported by Jeff Davis. The problem is that the
individual planning steps may have side-effects on substructures of
PlannerGlobal, not only the current PlannerInfo root. Arranging to keep
all such side effects in the main planning context is probably possible,
but it would change this from a quick local hack into a wide-ranging and
rather fragile endeavor. Which it's not worth.
In an inherited UPDATE/DELETE, each target table has its own subplan,
because it might have a column set different from other targets. This
means that the resjunk columns we add to support EvalPlanQual might be
at different physical column numbers in each subplan. The EvalPlanQual
rewrite I did for 9.0 failed to account for this, resulting in possible
misbehavior or even crashes during concurrent updates to the same row,
as seen in a recent report from Gordon Shannon. Revise the data structure
so that we track resjunk column numbers separately for each subplan.
I also chose to move responsibility for identifying the physical column
numbers back to executor startup, instead of assuming that numbers derived
during preprocess_targetlist would stay valid throughout subsequent
massaging of the plan. That's a bit slower, so we might want to consider
undoing it someday; but it would complicate the patch considerably and
didn't seem justifiable in a bug fix that has to be back-patched to 9.0.
Per my note of a couple days ago, create_index_paths would refuse to
consider any path at all for GIN indexes if the selectivity estimate came
out as 1.0; not even if you tried to force it with enable_seqscan. While
this isn't really a bad outcome in practice, it could be annoying for
testing purposes. Adjust the test for "is this path only useful for
sorting" so that it doesn't fire on paths with nil pathkeys, which will
include all GIN paths.
Foreign tables are a core component of SQL/MED. This commit does
not provide a working SQL/MED infrastructure, because foreign tables
cannot yet be queried. Support for foreign table scans will need to
be added in a future patch. However, this patch creates the necessary
system catalog structure, syntax support, and support for ancillary
operations such as COMMENT and SECURITY LABEL.
Shigeru Hanada, heavily revised by Robert Haas
This is advantageous first because it allows us to hash the smaller table
regardless of the outer-join type, and second because hash join can be more
flexible than merge join in dealing with arbitrary join quals in a FULL
join. For merge join all the join quals have to be mergejoinable, but hash
join will work so long as there's at least one hashjoinable qual --- the
others can be any condition. (This is true essentially because we don't
keep per-inner-tuple match flags in merge join, while hash join can do so.)
To do this, we need a has-it-been-matched flag for each tuple in the
hashtable, not just one for the current outer tuple. The key idea that
makes this practical is that we can store the match flag in the tuple's
infomask, since there are lots of bits there that are of no interest for a
MinimalTuple. So we aren't increasing the size of the hashtable at all for
the feature.
To write this without turning the hash code into even more of a pile of
spaghetti than it already was, I rewrote ExecHashJoin in a state-machine
style, similar to ExecMergeJoin. Other than that decision, it was pretty
straightforward.
eval_const_expressions() can replace CaseTestExprs with constants when
the surrounding CASE's test expression is a constant. This confuses
ruleutils.c's heuristic for deparsing simple-form CASEs, leading to
Assert failures or "unexpected CASE WHEN clause" errors. I had put in
a hack solution for that years ago (see commit
514ce7a331 of 2006-10-01), but bug #5794
from Peter Speck shows that that solution failed to cover all cases.
Fortunately, there's a much better way, which came to me upon reflecting
that Peter's "CASE TRUE WHEN" seemed pretty redundant: we can "simplify"
the simple-form CASE to the general form of CASE, by simply omitting the
constant test expression from the rebuilt CASE construct. This is
intuitively valid because there is no need for the executor to evaluate
the test expression at runtime; it will never be referenced, because any
CaseTestExprs that would have referenced it are now replaced by constants.
This won't save a whole lot of cycles, since evaluating a Const is pretty
cheap, but a cycle saved is a cycle earned. In any case it beats kluging
ruleutils.c still further. So this patch improves const-simplification
and reverts the previous change in ruleutils.c.
Back-patch to all supported branches. The bug exists in 8.1 too, but it's
out of warranty.
Avoid eating quite so much memory for large inheritance trees, by
reclaiming the space used by temporary copies of the original parsetree and
range table, as well as the workspace needed during planning. The cost is
needing to copy the finished plan trees out of the child memory context.
Although this looks like it ought to slow things down, my testing shows
it actually is faster, apparently because fewer interactions with malloc()
are needed and/or we can do the work within a more readily cacheable amount
of memory. That result might be platform-dependent, but I'll take it.
Per a gripe from John Papandriopoulos, in which it was pointed out that the
memory consumption actually grew as O(N^2) for sufficiently many child
tables, since we were creating N copies of the N-element range table.
This is a heavily revised version of builtin_knngist_core-0.9. The
ordering operators are no longer mixed in with actual quals, which would
have confused not only humans but significant parts of the planner.
Instead, ordering operators are carried separately throughout planning and
execution.
Since the API for ambeginscan and amrescan functions had to be changed
anyway, this commit takes the opportunity to rationalize that a bit.
RelationGetIndexScan no longer forces a premature index_rescan call;
instead, callers of index_beginscan must call index_rescan too. Aside from
making the AM-side initialization logic a bit less peculiar, this has the
advantage that we do not make a useless extra am_rescan call when there are
runtime key values. AMs formerly could not assume that the key values
passed to amrescan were actually valid; now they can.
Teodor Sigaev and Tom Lane
There were corner cases in which the planner would attempt to inline such
a function, which would result in a failure at runtime due to loss of
information about exactly what the result record type is. Fix by disabling
inlining when the function's recorded result type is RECORD. There might
be some sub-cases where inlining could still be allowed, but this is a
simple and backpatchable fix, so leave refinements for another day.
Per bug #5777 from Nate Carson.
Back-patch to all supported branches. 8.1 happens to avoid a core-dump
here, but it still does the wrong thing.
Formerly we looked up the operators associated with each index (caching
them in relcache) and then the planner looked up the btree opfamily
containing such operators in order to build the btree-centric pathkey
representation that describes the index's sort order. This is quite
pointless for btree indexes: we might as well just use the index's opfamily
information directly. That saves syscache lookup cycles during planning,
and furthermore allows us to eliminate the relcache's caching of operators
altogether, which may help in reducing backend startup time.
I added code to plancat.c to perform the same type of double lookup
on-the-fly if it's ever faced with a non-btree amcanorder index AM.
If such a thing actually becomes interesting for production, we should
replace that logic with some more-direct method for identifying the
corresponding btree opfamily; but it's not worth spending effort on now.
There is considerably more to do pursuant to my recent proposal to get rid
of sort-operator-based representations of sort orderings, but this patch
grabs some of the low-hanging fruit. I'll look at the remainder of that
work after the current commitfest.
This commit adds columns amoppurpose and amopsortfamily to pg_amop, and
column amcanorderbyop to pg_am. For the moment all the entries in
amcanorderbyop are "false", since the underlying support isn't there yet.
Also, extend the CREATE OPERATOR CLASS/ALTER OPERATOR FAMILY commands with
[ FOR SEARCH | FOR ORDER BY sort_operator_family ] clauses to allow the new
columns of pg_amop to be populated, and create pg_dump support for dumping
that information.
I also added some documentation, although it's perhaps a bit premature
given that the feature doesn't do anything useful yet.
Teodor Sigaev, Robert Haas, Tom Lane
We no longer need the terminating zero entry in opfamily[], so get rid of
it. Also replace assorted ad-hoc looping logic with simple for and foreach
constructs. This code is now noticeably more readable than it was an hour
ago; credit to Robert for seeing that it could be simplified.
As per the ancient comment for set_rel_width, it really wasn't much good
for relations that aren't plain tables: it would never find any stats and
would always fall back on datatype-based estimates, which are often pretty
silly. Fix that by copying up width estimates from the subquery planning
process.
At some point we might want to do this for CTEs too, but that would be a
significantly more invasive patch because the sub-PlannerInfo is no longer
accessible by the time it's needed. I refrained from doing anything about
that, partly for fear of breaking the unmerged CTE-related patches.
In passing, also generate less bogus width estimates for whole-row Vars.
Per a gripe from Jon Nelson.
Fix things so that top-N sorting can be used in child Sort nodes of a
MergeAppend node, when there is a LIMIT and no intervening joins or
grouping. Actually doing this on the executor side isn't too bad,
but it's a bit messier to get the planner to cost it properly.
Per gripe from Robert Haas.
In passing, fix an oversight in the original top-N-sorting patch:
query_planner should not assume that a LIMIT can be used to make an
explicit sort cheaper when there will be grouping or aggregation in
between. Possibly this should be back-patched, but I'm not sure the
mistake is serious enough to be a real problem in practice.
Once we have found a non-null constant argument, there is no need to
examine additional arguments of the COALESCE. The previous coding got it
right only if the constant was in the first argument position; otherwise
it tried to simplify following arguments too, leading to unexpected
behavior like this:
regression=# select coalesce(f1, 42, 1/0) from int4_tbl;
ERROR: division by zero
It's a minor corner case, but a bug is a bug, so back-patch all the way.
Formerly, we could convert a UNION ALL structure inside a subquery-in-FROM
into an appendrel, as a side effect of pulling up the subquery into its
parent; but top-level UNION ALL always caused use of plan_set_operations().
That didn't matter too much because you got an Append-based plan either
way. However, now that the appendrel code can do things with MergeAppend,
it's worthwhile to hack up the top-level case so it also uses appendrels.
This is a bit of a stopgap; but going much further than this will require
a major rewrite of the planner's set-operations support, which I'm not
prepared to undertake now. For the moment let's grab the low-hanging fruit.
Per my recent proposal, get rid of all the direct inspection of indexes
and manual generation of paths in planagg.c. Instead, set up
EquivalenceClasses for the aggregate argument expressions, and let the
regular path generation logic deal with creating paths that can satisfy
those sort orders. This makes planagg.c a bit more visible to the rest
of the planner than it was originally, but the approach is basically a lot
cleaner than before. A major advantage of doing it this way is that we get
MIN/MAX optimization on inheritance trees (using MergeAppend of indexscans)
practically for free, whereas in the old way we'd have had to add a whole
lot more duplicative logic.
One small disadvantage of this approach is that MIN/MAX aggregates can no
longer exploit partial indexes having an "x IS NOT NULL" predicate, unless
that restriction or something that implies it is specified in the query.
The previous implementation was able to use the added "x IS NOT NULL"
condition as an extra predicate proof condition, but in this version we
rely entirely on indexes that are considered usable by the main planning
process. That seems a fair tradeoff for the simplicity and functionality
gained.
It was reporting that these were fully indexed (hence cheap), when of
course they're the exact opposite of that. I'm not certain if the case
would arise in practice, since a clauseless semijoin is hard to produce
in SQL, but if it did happen we'd make some dumb decisions.
The core of this patch is hash_array() and associated typcache
infrastructure, which works just about exactly like the existing support
for array comparison.
In addition I did some work to ensure that the planner won't think that an
array type is hashable unless its element type is hashable, and similarly
for sorting. This includes adding a datatype parameter to op_hashjoinable
and op_mergejoinable, and adding an explicit "hashable" flag to
SortGroupClause. The lack of a cross-check on the element type was a
pre-existing bug in mergejoin support --- but it didn't matter so much
before, because if you couldn't sort the element type there wasn't any good
alternative to failing anyhow. Now that we have the alternative of hashing
the array type, there are cases where we can avoid a failure by being picky
at the planner stage, so it's time to be picky.
The issue of exactly how to combine the per-element hash values to produce
an array hash is still open for discussion, but the rest of this is pretty
solid, so I'll commit it as-is.
Now that we're expecting a mergeclause's left_ec/right_ec to persist from
the initial assignments, we can't just blithely zero these out when
transforming such a clause in adjust_appendrel_attrs. But really it should
be okay to keep the parent's values, since a child table's derived Var
ought to be equivalent to the parent Var for all EquivalenceClass purposes.
(Indeed, I'm wondering whether we couldn't find a way to dispense with
add_child_rel_equivalences altogether. But this is wrong in any case.)
Zoltan Boszormenyi exhibited a test case in which planning time was
dominated by construction of EquivalenceClasses and PathKeys that had no
actual relevance to the query (and in fact got discarded immediately).
This happened because we generated PathKeys describing the sort ordering of
every index on every table in the query, and only after that checked to see
if the sort ordering was relevant. The EC/PK construction code is O(N^2)
in the number of ECs, which is all right for the intended number of such
objects, but it gets out of hand if there are ECs for lots of irrelevant
indexes.
To fix, twiddle the handling of mergeclauses a little bit to ensure that
every interesting EC is created before we begin path generation. (This
doesn't cost anything --- in fact I think it's a bit cheaper than before
--- since we always eventually created those ECs anyway.) Then, if an
index column can't be found in any pre-existing EC, we know that that sort
ordering is irrelevant for the query. Instead of creating a useless EC,
we can just not build a pathkey for the index column in the first place.
The index will still be considered if it's useful for non-order-related
reasons, but we will think of its output as unsorted.
This avoids a possible crash when inlining a SRF whose argument list
contains a reference to an inline-able user function. The crash is quite
reproducible with CLOBBER_FREED_MEMORY enabled, but would be less certain
in a production build. Problem introduced in 9.0 by the named-arguments
patch, which requires invoking eval_const_expressions() before we can try
to inline a SRF. Per report from Brendan Jurd.
A couple of places in the planner need to generate whole-row Vars, and were
cutting corners by setting vartype = RECORDOID in the Vars, even in cases
where there's an identifiable named composite type for the RTE being
referenced. While we mostly got away with this, it failed when there was
also a parser-generated whole-row reference to the same RTE, because the
two Vars weren't equal() due to the difference in vartype. Fix by
providing a subroutine the planner can call to generate whole-row Vars
the same way the parser does.
Per bug #5716 from Andrew Tipton. Back-patch to 9.0 where one of the bogus
calls was introduced (the other one is new in HEAD).
This patch eliminates the former need to sort the output of an Append scan
when an ordered scan of an inheritance tree is wanted. This should be
particularly useful for fast-start cases such as queries with LIMIT.
Original patch by Greg Stark, with further hacking by Hans-Jurgen Schonig,
Robert Haas, and Tom Lane.
This patch merges the responsibility for NOT-flattening into
eval_const_expressions' processing. It wasn't done that way originally
because prepqual.c is far older than eval_const_expressions. But putting
this work into eval_const_expressions saves one pass over the qual trees,
and in fact saves even more than that because we can exploit the knowledge
that the subexpressions have already been recursively simplified. Doing it
this way also lets us do it uniformly over all expressions, whereas
prepqual.c formerly just did it at top level to save cycles. That should
improve the planner's ability to recognize logically-equivalent constructs.
While at it, also add the ability to fold a NOT into BooleanTest and
NullTest constructs (the latter only for the scalar-datatype case).
Per discussion of bug #5702.
This patch adds the SQL-standard concept of an INSTEAD OF trigger, which
is fired instead of performing a physical insert/update/delete. The
trigger function is passed the entire old and/or new rows of the view,
and must figure out what to do to the underlying tables to implement
the update. So this feature can be used to implement updatable views
using trigger programming style rather than rule hacking.
In passing, this patch corrects the names of some columns in the
information_schema.triggers view. It seems the SQL committee renamed
them somewhere between SQL:99 and SQL:2003.
Dean Rasheed, reviewed by Bernd Helmle; some additional hacking by me.
The point of a PlaceHolderVar is to allow a non-strict expression to be
evaluated below an outer join, after which its value bubbles up like a Var
and can be forced to NULL when the outer join's semantics require that.
However, there was a serious design oversight in that, namely that we
didn't ensure that there was actually a correct place in the plan tree
to evaluate the placeholder :-(. It may be necessary to delay evaluation
of an outer join to ensure that a placeholder that should be evaluated
below the join can be evaluated there. Per recent bug report from Kirill
Simonov.
Back-patch to 8.4 where the PlaceHolderVar mechanism was introduced.
The previous coding would decide that join removal was unsafe upon finding
a PlaceHolderVar that needed to be evaluated at the inner rel and then used
above the join. However, this fails to cover the case of PlaceHolderVars
that refer to both the inner rel and some other rels. Per bug report from
Andrus.
In some situations the original coding led to corrupting the child AppendRel's
subpaths list, effectively adding other members of the parent's list to it.
This was usually masked because we never made any further use of the child's
list, but given the right combination of circumstances, we could do so. The
visible symptom would be a relation getting scanned twice, as in bug #5673
from David Schmitt.
Backpatch to 8.2, which is as far back as the risky coding appears. The
example submitted by David only fails in 8.4 and later, but I'm not convinced
that there aren't any even-more-obscure cases where 8.2 and 8.3 would fail.
Poking around for remaining occurrences of CVS keyword strings, I came
across one that apparently reflects the use of a $Revision: ...$ string
in the original input data. Dunno why anybody would be using that in
an MTA's Received: lines, but there it is. Put it back to the way that
it was originally, according to inspection of the CVS repo.
In these cases a qual can get marked with the removable rel in its
required_relids, but this is just to schedule its evaluation correctly, not
because it really depends on the rel. We were assuming that, in effect,
we could throw away *all* quals so marked, which is nonsense. Tighten up
the logic to be a little more paranoid about which quals belong to the
outer join being considered for removal, and arrange for all quals that
don't belong to be updated so they will still get evaluated correctly.
Also fix another problem that happened to be exposed by this test case,
which was that make_join_rel() was failing to notice some cases where
a constant-false qual could be used to prove a join relation empty. If it's
a pushed-down constant false, then the relation is empty even if it's an
outer join, because the qual applies after the outer join expansion.
Per report from Nathan Grange. Back-patch into 9.0.
used by array_agg(), string_agg(), and similar aggregate functions that use
"internal" as their transition datatype. The previous coding thought this
took *no* extra space, since "internal" is pass-by-value; but actually these
aggregates typically consume a great deal of space. Per bug #5608 from
Itagaki Takahiro, and fix suggestion from Hitoshi Harada.
Back-patch to 8.4, where array_agg was introduced.
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels. This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.
ExecReScan's second parameter is now unused, so it's removed.
sub-select contains a join alias reference that expands into an expression
containing another sub-select. Per yesterday's report from Merlin Moncure
and subsequent off-list investigation.
Back-patch to 7.4. Older versions didn't attempt to flatten sub-selects in
ways that would trigger this problem.
If such a Var appeared within a nested sub-select, we failed to translate it
correctly during pullup of the view, because the recursive call to
replace_rte_variables_mutator was looking for the wrong sublevels_up value.
Bug was introduced during the addition of the PlaceHolderVar mechanism.
Per bug #5514 from Marcos Castedo.
If the original IN operator is cross-type, for example int8 = int4,
we need to use int4 < int4 to sort the inner data and int4 = int4
to unique-ify it. We got the first part of that right, but tried to
use the original IN operator for the equality checks. Per bug #5472
from Vlad Romascanu.
Backpatch to 8.4, where the bug was introduced by the patch that unified
SortClause and GroupClause. I was able to take out a whole lot of on-the-fly
calls of get_equality_op_for_ordering_op(), but failed to realize that
I needed to put one back in right here :-(