not named ones, and replace linear searches of the list with array indexing.
The named-parameter support has been dead code for many years anyway,
and recent profiling suggests that the searching was costing a noticeable
amount of performance for complex queries.
CREATE AGGREGATE aggname (input_type) (parameter_list)
along with the old syntax where the input type was named in the parameter
list. This fits more naturally with the way that the aggregate is identified
in DROP AGGREGATE and other utility commands; furthermore it has a natural
extension to handle multiple-input aggregates, where the basetype-parameter
method would get ugly. In fact, this commit fixes the grammar and all the
utility commands to support multiple-input aggregates; but DefineAggregate
rejects it because the executor isn't fixed yet.
I didn't do anything about treating agg(*) as a zero-input aggregate instead
of artificially making it a one-input aggregate, but that should be considered
in combination with supporting multi-input aggregates.
functions are not strict, they will be called (passing a NULL first parameter)
during any attempt to input a NULL value of their datatype. Currently, all
our input functions are strict and so this commit does not change any
behavior. However, this will make it possible to build domain input functions
that centralize checking of domain constraints, thereby closing numerous holes
in our domain support, as per previous discussion.
While at it, I took the opportunity to introduce convenience functions
InputFunctionCall, OutputFunctionCall, etc to use in code that calls I/O
functions. This eliminates a lot of grotty-looking casts, but the main
motivation is to make it easier to grep for these places if we ever need
to touch them again.
The original coding stored the raw parser output (ColumnDef and TypeName
nodes) which was ugly, bulky, and wrong because it failed to create any
dependency on the referenced datatype --- and in fact would not track type
renamings and suchlike. Instead store a list of column type OIDs in the
RTE.
Also fix up general failure of recordDependencyOnExpr to do anything sane
about recording dependencies on datatypes. While there are many cases where
there will be an indirect dependency (eg if an operator returns a datatype,
the dependency on the operator is enough), we do have to record the datatype
as a separate dependency in examples like CoerceToDomain.
initdb forced because of change of stored rules.
during parse analysis, not only errors detected in the flex/bison stages.
This is per my earlier proposal. This commit includes all the basic
infrastructure, but locations are only tracked and reported for errors
involving column references, function calls, and operators. More could
be done later but this seems like a good set to start with. I've also
moved the ReportSyntaxErrorPosition logic out of psql and into libpq,
which should make it available to more people --- even within psql this
is an improvement because warnings weren't handled by ReportSyntaxErrorPosition.
inheritance trees on-the-fly, which pretty well constrained us to considering
only one way of planning inheritance, expand inheritance sets during the
planner prep phase, and build a side data structure that can be consulted
later to find which RTEs are members of which inheritance sets. As proof of
concept, use the data structure to plan joins against inheritance sets more
efficiently: we can now use indexes on the set members in inner-indexscan
joins. (The generated plans could be improved further, but it'll take some
executor changes.) This data structure will also support handling UNION ALL
subqueries in the same way as inheritance sets, but that aspect of it isn't
finished yet.
(previously we only did = and <> correctly). Also, allow row comparisons
with any operators that are in btree opclasses, not only those with these
specific names. This gets rid of a whole lot of indefensible assumptions
about the behavior of particular operators based on their names ... though
it's still true that IN and NOT IN expand to "= ANY". The patch adds a
RowCompareExpr expression node type, and makes some changes in the
representation of ANY/ALL/ROWCOMPARE SubLinks so that they can share code
with RowCompareExpr.
I have not yet done anything about making RowCompareExpr an indexable
operator, but will look at that soon.
initdb forced due to changes in stored rules.
Per my recent proposal. I ended up basing the implementation on the
existing mechanism for enforcing valid join orders of IN joins --- the
rules for valid outer-join orders are somewhat similar.
ScalarArrayOpExpr when possible, that is, whenever there is an array type
for the values of the expression list. This completes the project I've
been working on to improve the speed of index searches with long IN lists,
as per discussion back in mid-October.
I did not force initdb, but until you do one you will see failures in the
"rules" regression test, because some of the standard system views use IN
and their compiled formats have changed.
"ctid IN (list)" will still work after we convert IN to ScalarArrayOpExpr.
Make some minor efficiency improvements while at it, such as ensuring that
multiple TIDs are fetched in physical heap order. And fix EXPLAIN so that
it shows what's really going on for a TID scan.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
process of dropping roles by dropping objects owned by them and privileges
granted to them, or giving the owned objects to someone else, through the
use of the data stored in the new pg_shdepend catalog.
Some refactoring of the GRANT/REVOKE code was needed, as well as ALTER OWNER
code. Further cleanup of code duplication in the GRANT code seems necessary.
Implemented by me after an idea from Tom Lane, who also provided various kind
of implementation advice.
Regression tests pass. Some tests for the new functionality are also added,
as well as rudimentary documentation.
sense and rename to "outerjoin_delayed" to more clearly reflect what it
means). I had decided that it was redundant in 8.1, but the folly of this
is exposed by a bug report from Sebastian Böck. The place where it's
needed is to prevent orindxpath.c from cherry-picking arms of an outer-join
OR clause to form a relation restriction that isn't actually legal to push
down to the relation scan level. There may be some legal cases that this
forbids optimizing, but we'd need much closer analysis to determine it.
on a page, as suggested by ITAGAKI Takahiro. Also, change a few places
that were using some other estimates of max-items-per-page to consistently
use MaxOffsetNumber. This is conservatively large --- we could have used
the new MaxHeapTuplesPerPage macro, or a similar one for index tuples ---
but those places are simply declaring a fixed-size buffer and assuming it
will work, rather than actively testing for overrun. It seems safer to
size these buffers in a way that can't overflow even if the page is
corrupt.
so that the latter estimates the number of groups that grouping will
produce. This is needed because it is primarily query_planner that
makes the decision between fast-start and fast-finish plans, and in the
original coding it was unable to make more than a crude rule-of-thumb
choice when the query involved grouping. This revision helps us make
saner choices for queries like SELECT ... GROUP BY ... LIMIT, as in a
recent example from Mark Kirkwood. Also move the responsibility for
canonicalizing sort_pathkeys and group_pathkeys into query_planner;
this information has to be available anyway to support the first change,
and doing it this way lets us get rid of compare_noncanonical_pathkeys
entirely.
planning logic for bitmap indexscans. Partial indexes create corner
cases in which a scan might be done with no explicit index qual conditions,
and the code wasn't handling those cases nicely. Also be a little
tenser about eliminating redundant clauses in the generated plan.
Per report from Dmitry Karasik.
doesn't automatically inherit the privileges of roles it is a member of;
for such a role, membership in another role can be exploited only by doing
explicit SET ROLE. The default inherit setting is TRUE, so by default
the behavior doesn't change, but creating a user with NOINHERIT gives closer
adherence to our current reading of SQL99. Documentation still lacking,
and I think the information schema needs another look.
propagated inside an outer join. In particular, given
LEFT JOIN ON (A = B) WHERE A = constant, we cannot conclude that
B = constant at the top level (B might be null instead), but we
can nonetheless put a restriction B = constant into the quals for
B's relation, since no inner-side rows not meeting that condition
can contribute to the final result. Similarly, given
FULL JOIN USING (J) WHERE J = constant, we can't directly conclude
that either input J variable = constant, but it's OK to push such
quals into each input rel. Per recent gripe from Kim Bisgaard.
Along the way, remove 'valid_everywhere' flag from RestrictInfo,
as on closer analysis it was not being used for anything, and was
defined backwards anyway.
and pg_auth_members. There are still many loose ends to finish in this
patch (no documentation, no regression tests, no pg_dump support for
instance). But I'm going to commit it now anyway so that Alvaro can
make some progress on shared dependencies. The catalog changes should
be pretty much done.
in the database. The old behavior (reindex system catalogs only) is now
available as REINDEX SYSTEM. I did not add the complementary REINDEX USER
case since there did not seem to be consensus for this, but it would be
trivial to add later. Per recent discussions.
of a relation in a flat 'joininfo' list. The former arrangement grouped
the join clauses according to the set of unjoined relids used in each;
however, profiling on test cases involving lots of joins proves that
that data structure is a net loss. It takes more time to group the
join clauses together than is saved by avoiding duplicate tests later.
It doesn't help any that there are usually not more than one or two
clauses per group ...
other_rel_list with a single array indexed by rangetable index.
This reduces find_base_rel from O(N) to O(1) without any real penalty.
While find_base_rel isn't one of the major bottlenecks in any profile
I've seen so far, it was starting to creep up on the radar screen
for complex queries --- so might as well fix it.
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
spotted by Qingqing Zhou. The HASH_ENTER action now automatically
fails with elog(ERROR) on out-of-memory --- which incidentally lets
us eliminate duplicate error checks in quite a bunch of places. If
you really need the old return-NULL-on-out-of-memory behavior, you
can ask for HASH_ENTER_NULL. But there is now an Assert in that path
checking that you aren't hoping to get that behavior in a palloc-based
hash table.
Along the way, remove the old HASH_FIND_SAVE/HASH_REMOVE_SAVED actions,
which were not being used anywhere anymore, and were surely too ugly
and unsafe to want to see revived again.
than one heap page represented in the bitmap. This is a bit ugly but
it cuts overhead fairly effectively in simple join cases. Per example
from Sergey Koposov.
only one argument. (Per recent discussion, the option to accept multiple
arguments is pretty useless for user-defined types, and would be a likely
source of security holes if it was used.) Simplify call sites of
output/send functions to not bother passing more than one argument.
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.
node, as this behavior is now better done as a bitmap OR indexscan.
This allows considerable simplification in nodeIndexscan.c itself as
well as several planner modules concerned with indexscan plan generation.
Also we can improve the sharing of code between regular and bitmap
indexscans, since they are now working with nigh-identical Plan nodes.
logic operations during planning. Seems cleaner to create two new Path
node types, instead --- this avoids duplication of cost-estimation code.
Also, create an enable_bitmapscan GUC parameter to control use of bitmap
plans.
scans, using in-memory tuple ID bitmaps as the intermediary. The planner
frontend (path creation and cost estimation) is not there yet, so none
of this code can be executed. I have tested it using some hacked planner
code that is far too ugly to see the light of day, however. Committing
now so that the bulk of the infrastructure changes go in before the tree
drifts under me.