The idea behind SPI_push was to allow transitioning back into an
"unconnected" state when a SPI-using procedure calls unrelated code that
might or might not invoke SPI. That sounds good, but in practice the only
thing it does for us is to catch cases where a called SPI-using function
forgets to call SPI_connect --- which is a highly improbable failure mode,
since it would be exposed immediately by direct testing of said function.
As against that, we've had multiple bugs induced by forgetting to call
SPI_push/SPI_pop around code that might invoke SPI-using functions; these
are much harder to catch and indeed have gone undetected for years in some
cases. And we've had to band-aid around some problems of this ilk by
introducing conditional push/pop pairs in some places, which really kind
of defeats the purpose altogether; if we can't draw bright lines between
connected and unconnected code, what's the point?
Hence, get rid of SPI_push[_conditional], SPI_pop[_conditional], and the
underlying state variable _SPI_curid. It turns out SPI_restore_connection
can go away too, which is a nice side benefit since it was never more than
a kluge. Provide no-op macros for the deleted functions so as to avoid an
API break for external modules.
A side effect of this removal is that SPI_palloc and allied functions no
longer permit being called when unconnected; they'll throw an error
instead. The apparent usefulness of the previous behavior was a mirage
as well, because it was depended on by only a few places (which I fixed in
preceding commits), and it posed a risk of allocations being unexpectedly
long-lived if someone forgot a SPI_push call.
Discussion: <20808.1478481403@sss.pgh.pa.us>
Previously, plpython was in the habit of allocating a lot of stuff in
TopMemoryContext, and it was very slipshod about making sure that stuff
got cleaned up; in particular, use of TopMemoryContext as fn_mcxt for
function calls represents an unfixable leak, since we generally don't
know what the called function might have allocated in fn_mcxt. This
results in session-lifespan leakage in certain usage scenarios, as for
example in a case reported by Ed Behn back in July.
To fix, get rid of all the retail allocations in TopMemoryContext.
All long-lived allocations are now made in sub-contexts that are
associated with specific objects (either pl/python procedures, or
Python-visible objects such as cursors and plans). We can clean these
up when the associated object is deleted.
I went so far as to get rid of PLy_malloc completely. There were a
couple of places where it could still have been used safely, but on
the whole it was just an invitation to bad coding.
Haribabu Kommi, based on a draft patch by Heikki Linnakangas;
some further work by me
This moves the code around from one huge file into hopefully logical
and more manageable modules. For the most part, the code itself was
not touched, except: PLy_function_handler and PLy_trigger_handler were
renamed to PLy_exec_function and PLy_exec_trigger, because they were
not actually handlers in the PL handler sense, and it makes the naming
more similar to the way PL/pgSQL is organized. The initialization of
the procedure caches was separated into a new function
init_procedure_caches to keep the hash tables private to
plpy_procedures.c.
Jan Urbański and Peter Eisentraut