Add command variants COMMIT AND CHAIN and ROLLBACK AND CHAIN, which
start new transactions with the same transaction characteristics as the
just finished one, per SQL standard.
Support for transaction chaining in PL/pgSQL is also added. This
functionality is especially useful when running COMMIT in a loop in
PL/pgSQL.
Reviewed-by: Fabien COELHO <coelho@cri.ensmp.fr>
Discussion: https://www.postgresql.org/message-id/flat/28536681-324b-10dc-ade8-ab46f7645a5a@2ndquadrant.com
This adds a flag "deterministic" to collations. If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal. That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.
This functionality is only supported with the ICU provider. At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.
The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).
This patch makes changes in three areas:
- CREATE COLLATION DDL changes and system catalog changes to support
this new flag.
- Many executor nodes and auxiliary code are extended to track
collations. Previously, this code would just throw away collation
information, because the eventually-called user-defined functions
didn't use it since they only cared about equality, which didn't
need collation information.
- String data type functions that do equality comparisons and hashing
are changed to take the (non-)deterministic flag into account. For
comparison, this just means skipping various shortcuts and tie
breakers that use byte-wise comparison. For hashing, we first need
to convert the input string to a canonical "sort key" using the ICU
analogue of strxfrm().
Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
Commit 6776142a07afb4c28961f27059d800196902f5f1 failed to do this,
and the buildfarm broke.
Patch by me, per advice from Tom Lane and Michael Paquier.
Discussion: http://postgr.es/m/13988.1552960403@sss.pgh.pa.us
Aggregates have acquired a dozen or so optional attributes in recent
years for things like parallel query and moving-aggregate mode; the
lack of an OR REPLACE option to add or change these for an existing
agg makes extension upgrades gratuitously hard. Rectify.
We still require AccessExclusiveLock on the partition itself, because
otherwise an insert that violates the newly-imposed partition
constraint could be in progress at the same time that we're changing
that constraint; only the lock level on the parent relation is
weakened.
To make this safe, we have to cope with (at least) three separate
problems. First, relevant DDL might commit while we're in the process
of building a PartitionDesc. If so, find_inheritance_children() might
see a new partition while the RELOID system cache still has the old
partition bound cached, and even before invalidation messages have
been queued. To fix that, if we see that the pg_class tuple seems to
be missing or to have a null relpartbound, refetch the value directly
from the table. We can't get the wrong value, because DETACH PARTITION
still requires AccessExclusiveLock throughout; if we ever want to
change that, this will need more thought. In testing, I found it quite
difficult to hit even the null-relpartbound case; the race condition
is extremely tight, but the theoretical risk is there.
Second, successive calls to RelationGetPartitionDesc might not return
the same answer. The query planner will get confused if lookup up the
PartitionDesc for a particular relation does not return a consistent
answer for the entire duration of query planning. Likewise, query
execution will get confused if the same relation seems to have a
different PartitionDesc at different times. Invent a new
PartitionDirectory concept and use it to ensure consistency. This
ensures that a single invocation of either the planner or the executor
sees the same view of the PartitionDesc from beginning to end, but it
does not guarantee that the planner and the executor see the same
view. Since this allows pointers to old PartitionDesc entries to
survive even after a relcache rebuild, also postpone removing the old
PartitionDesc entry until we're certain no one is using it.
For the most part, it seems to be OK for the planner and executor to
have different views of the PartitionDesc, because the executor will
just ignore any concurrently added partitions which were unknown at
plan time; those partitions won't be part of the inheritance
expansion, but invalidation messages will trigger replanning at some
point. Normally, this happens by the time the very next command is
executed, but if the next command acquires no locks and executes a
prepared query, it can manage not to notice until a new transaction is
started. We might want to tighten that up, but it's material for a
separate patch. There would still be a small window where a query
that started just after an ATTACH PARTITION command committed might
fail to notice its results -- but only if the command starts before
the commit has been acknowledged to the user. All in all, the warts
here around serializability seem small enough to be worth accepting
for the considerable advantage of being able to add partitions without
a full table lock.
Although in general the consequences of new partitions showing up
between planning and execution are limited to the query not noticing
the new partitions, run-time partition pruning will get confused in
that case, so that's the third problem that this patch fixes.
Run-time partition pruning assumes that indexes into the PartitionDesc
are stable between planning and execution. So, add code so that if
new partitions are added between plan time and execution time, the
indexes stored in the subplan_map[] and subpart_map[] arrays within
the plan's PartitionedRelPruneInfo get adjusted accordingly. There
does not seem to be a simple way to generalize this scheme to cope
with partitions that are removed, mostly because they could then get
added back again with different bounds, but it works OK for added
partitions.
This code does not try to ensure that every backend participating in
a parallel query sees the same view of the PartitionDesc. That
currently doesn't matter, because we never pass PartitionDesc
indexes between backends. Each backend will ignore the concurrently
added partitions which it notices, and it doesn't matter if different
backends are ignoring different sets of concurrently added partitions.
If in the future that matters, for example because we allow writes in
parallel query and want all participants to do tuple routing to the same
set of partitions, the PartitionDirectory concept could be improved to
share PartitionDescs across backends. There is a draft patch to
serialize and restore PartitionDescs on the thread where this patch
was discussed, which may be a useful place to start.
Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs,
Amit Langote, and Michael Paquier for discussion, and to Alvaro
Herrera for some review.
Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
This includes a catversion bump, as IntoClause is theoretically
speaking part of storable rules. In practice I don't think that can
happen, but there's no reason to be stingy here.
Per buildfarm member calliphoridae.
This introduces the concept of table access methods, i.e. CREATE
ACCESS METHOD ... TYPE TABLE and
CREATE TABLE ... USING (storage-engine).
No table access functionality is delegated to table AMs as of this
commit, that'll be done in following commits.
Subsequent commits will incrementally abstract table access
functionality to be routed through table access methods. That change
is too large to be reviewed & committed at once, so it'll be done
incrementally.
Docs will be updated at the end, as adding them incrementally would
likely make them less coherent, and definitely is a lot more work,
without a lot of benefit.
Table access methods are specified similar to index access methods,
i.e. pg_am.amhandler returns, as INTERNAL, a pointer to a struct with
callbacks. In contrast to index AMs that struct needs to live as long
as a backend, typically that's achieved by just returning a pointer to
a constant struct.
Psql's \d+ now displays a table's access method. That can be disabled
with HIDE_TABLEAM=true, which is mainly useful so regression tests can
be run against different AMs. It's quite possible that this behaviour
still needs to be fine tuned.
For now it's not allowed to set a table AM for a partitioned table, as
we've not resolved how partitions would inherit that. Disallowing
allows us to introduce, if we decide that's the way forward, such a
behaviour without a compatibility break.
Catversion bumped, to add the heap table AM and references to it.
Author: Haribabu Kommi, Andres Freund, Alvaro Herrera, Dimitri Golgov and others
Discussion:
https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.dehttps://postgr.es/m/20160812231527.GA690404@alvherre.pgsqlhttps://postgr.es/m/20190107235616.6lur25ph22u5u5av@alap3.anarazel.dehttps://postgr.es/m/20190304234700.w5tmhducs5wxgzls@alap3.anarazel.de
Historically we've always materialized the full output of a CTE query,
treating WITH as an optimization fence (so that, for example, restrictions
from the outer query cannot be pushed into it). This is appropriate when
the CTE query is INSERT/UPDATE/DELETE, or is recursive; but when the CTE
query is non-recursive and side-effect-free, there's no hazard of changing
the query results by pushing restrictions down.
Another argument for materialization is that it can avoid duplicate
computation of an expensive WITH query --- but that only applies if
the WITH query is called more than once in the outer query. Even then
it could still be a net loss, if each call has restrictions that
would allow just a small part of the WITH query to be computed.
Hence, let's change the behavior for WITH queries that are non-recursive
and side-effect-free. By default, we will inline them into the outer
query (removing the optimization fence) if they are called just once.
If they are called more than once, we will keep the old behavior by
default, but the user can override this and force inlining by specifying
NOT MATERIALIZED. Lastly, the user can force the old behavior by
specifying MATERIALIZED; this would mainly be useful when the query had
deliberately been employing WITH as an optimization fence to prevent a
poor choice of plan.
Andreas Karlsson, Andrew Gierth, David Fetter
Discussion: https://postgr.es/m/87sh48ffhb.fsf@news-spur.riddles.org.uk
The old name of this file was never a very good indication of what it
was for. Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.
While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.
Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
Extends the COPY FROM command with a WHERE condition, which allows doing
various types of filtering while importing the data (random sampling,
condition on a data column, etc.). Until now such filtering required
either preprocessing of the input data, or importing all data and then
filtering in the database. COPY FROM ... WHERE is an easy-to-use and
low-overhead alternative for most simple cases.
Author: Surafel Temesgen
Reviewed-by: Tomas Vondra, Masahiko Sawada, Lim Myungkyu
Discussion: https://www.postgresql.org/message-id/flat/CALAY4q_DdpWDuB5-Zyi-oTtO2uSk8pmy+dupiRe3AvAc++1imA@mail.gmail.com
In commit 8b08f7d4820f I added member relationId to IndexStmt struct.
I'm now not sure why; DefineIndex doesn't need it, since the relation
OID is passed as a separate argument anyway. Remove it.
Also remove a redundant assignment to the relationId argument (it wasn't
redundant when added by commit e093dcdd285, but should have been removed
in commit 5f173040e3), and use relationId instead of stmt->relation when
locking the relation in the second phase of CREATE INDEX CONCURRENTLY,
which is not only confusing but it means we resolve the name twice for
no reason.
The original code to propagate NOT NULL and default expressions
specified when creating a partition was mostly copy-pasted from
typed-tables creation, but not being a great match it contained some
duplicity, inefficiency and bugs.
This commit fixes the bug that NOT NULL constraints declared in the
parent table would not be honored in the partition. One reported issue
that is not fixed is that a DEFAULT declared in the child is not used
when inserting through the parent. That would amount to a behavioral
change that's better not back-patched.
This rewrite makes the code simpler:
1. instead of checking for duplicate column names in its own block,
reuse the original one that already did that;
2. instead of concatenating the list of columns from parent and the one
declared in the partition and scanning the result to (incorrectly)
propagate defaults and not-null constraints, just scan the latter
searching the former for a match, and merging sensibly. This works
because we know the list in the parent is already correct and there can
only be one parent.
This rewrite makes ColumnDef->is_from_parent unused, so it's removed
on branch master; on released branches, it's kept as an unused field in
order not to cause ABI incompatibilities.
This commit also adds a test case for creating partitions with
collations mismatching that on the parent table, something that is
closely related to the code being patched. No code change is introduced
though, since that'd be a behavior change that could break some (broken)
working applications.
Amit Langote wrote a less invasive fix for the original
NOT NULL/defaults bug, but while I kept the tests he added, I ended up
not using his original code. Ashutosh Bapat reviewed Amit's fix. Amit
reviewed mine.
Author: Álvaro Herrera, Amit Langote
Reviewed-by: Ashutosh Bapat, Amit Langote
Reported-by: Jürgen Strobel (bug #15212)
Discussion: https://postgr.es/m/152746742177.1291.9847032632907407358@wrigleys.postgresql.org
There was no code to handle foreign key constraints on partitioned
tables in the case of ALTER TABLE DETACH; and if you happened to ATTACH
a partition that already had an equivalent constraint, that one was
ignored and a new constraint was created. Adding this to the fact that
foreign key cloning reuses the constraint name on the partition instead
of generating a new name (as it probably should, to cater to SQL
standard rules about constraint naming within schemas), the result was a
pretty poor user experience -- the most visible failure was that just
detaching a partition and re-attaching it failed with an error such as
ERROR: duplicate key value violates unique constraint "pg_constraint_conrelid_contypid_conname_index"
DETAIL: Key (conrelid, contypid, conname)=(26702, 0, test_result_asset_id_fkey) already exists.
because it would try to create an identically-named constraint in the
partition. To make matters worse, if you tried to drop the constraint
in the now-independent partition, that would fail because the constraint
was still seen as dependent on the constraint in its former parent
partitioned table:
ERROR: cannot drop inherited constraint "test_result_asset_id_fkey" of relation "test_result_cbsystem_0001_0050_monthly_2018_09"
This fix attacks the problem from two angles: first, when the partition
is detached, the constraint is also marked as independent, so the drop
now works. Second, when the partition is re-attached, we scan existing
constraints searching for one matching the FK in the parent, and if one
exists, we link that one to the parent constraint. So we don't end up
with a duplicate -- and better yet, we don't need to scan the referenced
table to verify that the constraint holds.
To implement this I made a small change to previously planner-only
struct ForeignKeyCacheInfo to contain the constraint OID; also relcache
now maintains the list of FKs for partitioned tables too.
Backpatch to 11.
Reported-by: Michael Vitale (bug #15425)
Discussion: https://postgr.es/m/15425-2dbc9d2aa999f816@postgresql.org
In the wake of commit f2343653f, we no longer need some fields that
were used before to control executor lock acquisitions:
* PlannedStmt.nonleafResultRelations can go away entirely.
* partitioned_rels can go away from Append, MergeAppend, and ModifyTable.
However, ModifyTable still needs to know the RT index of the partition
root table if any, which was formerly kept in the first entry of that
list. Add a new field "rootRelation" to remember that. rootRelation is
partly redundant with nominalRelation, in that if it's set it will have
the same value as nominalRelation. However, the latter field has a
different purpose so it seems best to keep them distinct.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
Create an array estate->es_relations[] paralleling the es_range_table,
and store references to Relations (relcache entries) there, so that any
given RT entry is opened and closed just once per executor run. Scan
nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation
is no more; relation closing is now done centrally in ExecEndPlan.
This is slightly more complex than one would expect because of the
interactions with relcache references held in ResultRelInfo nodes.
The general convention is now that ResultRelInfo->ri_RelationDesc does
not represent a separate relcache reference and so does not need to be
explicitly closed; but there is an exception for ResultRelInfos in the
es_trig_target_relations list, which are manufactured by
ExecGetTriggerResultRel and have to be cleaned up by
ExecCleanUpTriggerState. (That much was true all along, but these
ResultRelInfos are now more different from others than they used to be.)
To allow the partition pruning logic to make use of es_relations[] rather
than having its own relcache references, adjust PartitionedRelPruneInfo
to store an RT index rather than a relation OID.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
some mods by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
Add RangeTblEntry.rellockmode, which records the appropriate lock mode for
each RTE_RELATION rangetable entry (either AccessShareLock, RowShareLock,
or RowExclusiveLock depending on the RTE's role in the query).
This patch creates the field and makes all creators of RTE nodes fill it
in reasonably, but for the moment nothing much is done with it. The plan
is to replace assorted post-parser logic that re-determines the right
lockmode to use with simple uses of rte->rellockmode. For now, just add
Asserts in each of those places that the rellockmode matches what they are
computing today. (In some cases the match isn't perfect, so the Asserts
are weaker than you might expect; but this seems OK, as per discussion.)
This passes check-world for me, but it seems worth pushing in this state
to see if the buildfarm finds any problems in cases I failed to test.
catversion bump due to change of stored rules.
Amit Langote, reviewed by David Rowley and Jesper Pedersen,
and whacked around a bit more by me
Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
The previous coding here supposed that if run-time partitioning applied to
a particular Append/MergeAppend plan, then all child plans of that node
must be members of a single partitioning hierarchy. This is totally wrong,
since an Append could be formed from a UNION ALL: we could have multiple
hierarchies sharing the same Append, or child plans that aren't part of any
hierarchy.
To fix, restructure the related plan-time and execution-time data
structures so that we can have a separate list or array for each
partitioning hierarchy. Also track subplans that are not part of any
hierarchy, and make sure they don't get pruned.
Per reports from Phil Florent and others. Back-patch to v11, since
the bug originated there.
David Rowley, with a lot of cosmetic adjustments by me; thanks also
to Amit Langote for review.
Discussion: https://postgr.es/m/HE1PR03MB17068BB27404C90B5B788BCABA7B0@HE1PR03MB1706.eurprd03.prod.outlook.com
This extends cluster_rel() in such a way that more options can be added
in the future, which will reduce the amount of chunk code for an
upcoming SKIP_LOCKED aimed for VACUUM. As VACUUM FULL is a different
flavor of CLUSTER, we want to make that extensible to ease integration.
This only reworks the API and its callers, without providing anything
user-facing. Two options are present now: verbose mode and relation
recheck when doing the cluster command work across multiple
transactions. This could be used as well as a base to extend the
grammar of CLUSTER later on.
Author: Michael Paquier
Reviewed-by: Nathan Bossart
Discussion: https://postgr.es/m/20180723031058.GE2854@paquier.xyz
These struct definitions were originally dropped into primnodes.h,
which is a poor choice since that's mainly intended for primitive
expression node types; these are not in that category. What they
are is auxiliary info in Plan trees, so move them to plannodes.h.
For consistency, also relocate some related code that was apparently
placed with the aid of a dartboard.
There's no interesting code changes in this commit, just reshuffling.
David Rowley and Tom Lane
Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
The initial coding of the run-time-pruning feature only coped with cases
where the partition key(s) are compared to Params. That is a bit silly;
we can allow it to work with any non-Var-containing stable expression, as
long as we take special care with expressions containing PARAM_EXEC Params.
The code is hardly any longer this way, and it's considerably clearer
(IMO at least). Per gripe from Pavel Stehule.
David Rowley, whacked around a bit by me
Discussion: https://postgr.es/m/CAFj8pRBjrufA3ocDm8o4LPGNye9Y+pm1b9kCwode4X04CULG3g@mail.gmail.com
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
This patch introduces INCLUDE clause to index definition. This clause
specifies a list of columns which will be included as a non-key part in
the index. The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans. Also, such columns don't need to have
appropriate operator classes. Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.
Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine. For now, only B-tree indexes support INCLUDE clause.
In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys). Therefore, B-tree indexes
now might have variable number of attributes. This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid. Free 13th bit of t_info is used for indicating
that. This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.
Bump catalog version
Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
Add a new module backend/partitioning/partprune.c, implementing a more
sophisticated algorithm for partition pruning. The new module uses each
partition's "boundinfo" for pruning instead of constraint exclusion,
based on an idea proposed by Robert Haas of a "pruning program": a list
of steps generated from the query quals which are run iteratively to
obtain a list of partitions that must be scanned in order to satisfy
those quals.
At present, this targets planner-time partition pruning, but there exist
further patches to apply partition pruning at execution time as well.
This commit also moves some definitions from include/catalog/partition.h
to a new file include/partitioning/partbounds.h, in an attempt to
rationalize partitioning related code.
Authors: Amit Langote, David Rowley, Dilip Kumar
Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen.
Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
This adds simple cost based plan time decision about whether JIT
should be performed. jit_above_cost, jit_optimize_above_cost are
compared with the total cost of a plan, and if the cost is above them
JIT is performed / optimization is performed respectively.
For that PlannedStmt and EState have a jitFlags (es_jit_flags) field
that stores information about what JIT operations should be performed.
EState now also has a new es_jit field, which can store a
JitContext. When there are no errors the context is released in
standard_ExecutorEnd().
It is likely that the default values for jit_[optimize_]above_cost
will need to be adapted further, but in my test these values seem to
work reasonably.
Author: Andres Freund, with feedback by Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
Instead of embedding the savepoint name in a list and then requiring
complex code to unpack it, just add another struct field to store it
directly.
Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
The LIKE INCLUDING ALL clause to CREATE TABLE intuitively indicates
cloning of extended statistics on the source table, but it failed to do
so. Patch it up so that it does. Also include an INCLUDING STATISTICS
option to the LIKE clause, so that the behavior can be requested
individually, or excluded individually.
While at it, reorder the INCLUDING options, both in code and in docs, in
alphabetical order which makes more sense than feature-implementation
order that was previously used.
Backpatch this to Postgres 10, where extended statistics were
introduced, because this is seen as an oversight in a fresh feature
which is better to get consistent from the get-go instead of changing
only in pg11.
In pg11, comments on statistics objects are cloned too. In pg10 they
are not, because I (Álvaro) was too coward to change the parse node as
required to support it. Also, in pg10 I chose not to renumber the
parser symbols for the various INCLUDING options in LIKE, for the same
reason. Any corresponding user-visible changes (docs) are backpatched,
though.
Reported-by: Stephen Froehlich
Author: David Rowley
Reviewed-by: Álvaro Herrera, Tomas Vondra
Discussion: https://postgr.es/m/CY1PR0601MB1927315B45667A1B679D0FD5E5EF0@CY1PR0601MB1927.namprd06.prod.outlook.com
To support parameters in CALL, move the parse analysis of the procedure
and arguments into the global transformation phase, so that the parser
hooks can be applied. And then at execution time pass the parameters
from ProcessUtility on to ExecuteCallStmt.
This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING"
frame boundaries in window functions. We'd punted on that back in the
original patch to add window functions, because it was not clear how to
do it in a reasonably data-type-extensible fashion. That problem is
resolved here by adding the ability for btree operator classes to provide
an "in_range" support function that defines how to add or subtract the
RANGE offset value. Factoring it this way also allows the operator class
to avoid overflow problems near the ends of the datatype's range, if it
wishes to expend effort on that. (In the committed patch, the integer
opclasses handle that issue, but it did not seem worth the trouble to
avoid overflow failures for datetime types.)
The patch includes in_range support for the integer_ops opfamily
(int2/int4/int8) as well as the standard datetime types. Support for
other numeric types has been requested, but that seems like suitable
material for a follow-on patch.
In addition, the patch adds GROUPS mode which counts the offset in
ORDER-BY peer groups rather than rows, and it adds the frame_exclusion
options specified by SQL:2011. As far as I can see, we are now fully
up to spec on window framing options.
Existing behaviors remain unchanged, except that I changed the errcode
for a couple of existing error reports to meet the SQL spec's expectation
that negative "offset" values should be reported as SQLSTATE 22013.
Internally and in relevant parts of the documentation, we now consistently
use the terminology "offset PRECEDING/FOLLOWING" rather than "value
PRECEDING/FOLLOWING", since the term "value" is confusingly vague.
Oliver Ford, reviewed and whacked around some by me
Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
Investigation of 2d2d06b7e27e3177d5bef0061801c75946871db3 revealed that
identity values were not applied in some further cases, including
logical replication subscribers, VALUES RTEs, and ALTER TABLE ... ADD
COLUMN. To fix all that, apply the identity column expression in
build_column_default() instead of repeating the same logic at each call
site.
For ALTER TABLE ... ADD COLUMN ... IDENTITY, the previous coding
completely ignored that existing rows for the new column should have
values filled in from the identity sequence. The coding using
build_column_default() fails for this because the sequence ownership
isn't registered until after ALTER TABLE, and we can't do it before
because we don't have the column in the catalog yet. So we specially
remember in ColumnDef the sequence name that we decided on and build a
custom NextValueExpr using that.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
This clause was superseded by SQL-standard syntax back in 7.3.
We've kept it around for backwards-compatibility purposes ever since;
but 15 years seems like long enough for that, especially seeing that
there are undocumented weirdnesses in how it interacts with the
SQL-standard syntax for specifying the same options.
Michael Paquier, per an observation by Daniel Gustafsson;
some small cosmetic adjustments to nearby code by me.
Discussion: https://postgr.es/m/20180115022748.GB1724@paquier.xyz
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint. In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one. This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented. (There is a pending patch to improve the
situation further, but it needs more review.)
Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me. A few final revisions by me.
Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
When CREATE INDEX is run on a partitioned table, create catalog entries
for an index on the partitioned table (which is just a placeholder since
the table proper has no data of its own), and recurse to create actual
indexes on the existing partitions; create them in future partitions
also.
As a convenience gadget, if the new index definition matches some
existing index in partitions, these are picked up and used instead of
creating new ones. Whichever way these indexes come about, they become
attached to the index on the parent table and are dropped alongside it,
and cannot be dropped on isolation unless they are detached first.
To support pg_dump'ing these indexes, add commands
CREATE INDEX ON ONLY <table>
(which creates the index on the parent partitioned table, without
recursing) and
ALTER INDEX ATTACH PARTITION
(which is used after the indexes have been created individually on each
partition, to attach them to the parent index). These reconstruct prior
database state exactly.
Reviewed-by: (in alphabetical order) Peter Eisentraut, Robert Haas, Amit
Langote, Jesper Pedersen, Simon Riggs, David Rowley
Discussion: https://postgr.es/m/20171113170646.gzweigyrgg6pwsg4@alvherre.pgsql
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash. While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.
After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory. If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.
The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:
* avoids wasting memory on duplicated hash tables
* avoids wasting disk space on duplicated batch files
* divides the work of building the hash table over the CPUs
One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables. This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes. Another is that
outer batch 0 must be written to disk if multiple batches are required.
A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.
A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.
Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.comhttps://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers. This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe. We do - in this case - lose the
optimization that the value is only computed if it's actually used. An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node. At some point in the future, we
might want to consider both approaches.
Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques. But this is a good start.
Amit Kapila, reviewed and revised by me. Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.
Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
Hash partitioning is useful when you want to partition a growing data
set evenly. This can be useful to keep table sizes reasonable, which
makes maintenance operations such as VACUUM faster, or to enable
partition-wise join.
At present, we still depend on constraint exclusion for partitioning
pruning, and the shape of the partition constraints for hash
partitioning is such that that doesn't work. Work is underway to fix
that, which should both improve performance and make partitioning
pruning work with hash partitioning.
Amul Sul, reviewed and tested by Dilip Kumar, Ashutosh Bapat, Yugo
Nagata, Rajkumar Raghuwanshi, Jesper Pedersen, and by me. A few
final tweaks also by me.
Discussion: http://postgr.es/m/CAAJ_b96fhpJAP=ALbETmeLk1Uni_GFZD938zgenhF49qgDTjaQ@mail.gmail.com
Not much to say about this; does what it says on the tin.
However, formerly, if there was a column list then the ANALYZE action was
implied; now it must be specified, or you get an error. This is because
it would otherwise be a bit unclear what the user meant if some tables
have column lists and some don't.
Nathan Bossart, reviewed by Michael Paquier and Masahiko Sawada, with some
editorialization by me
Discussion: https://postgr.es/m/E061A8E3-5E3D-494D-94F0-E8A9B312BBFC@amazon.com