of a relation in a flat 'joininfo' list. The former arrangement grouped
the join clauses according to the set of unjoined relids used in each;
however, profiling on test cases involving lots of joins proves that
that data structure is a net loss. It takes more time to group the
join clauses together than is saved by avoiding duplicate tests later.
It doesn't help any that there are usually not more than one or two
clauses per group ...
other_rel_list with a single array indexed by rangetable index.
This reduces find_base_rel from O(N) to O(1) without any real penalty.
While find_base_rel isn't one of the major bottlenecks in any profile
I've seen so far, it was starting to creep up on the radar screen
for complex queries --- so might as well fix it.
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
RTE of interest, rather than the whole rangetable list. This makes
the API more understandable and avoids duplicate RTE lookups. This
patch reverts no-longer-needed portions of my patch of 2004-08-19.
performance problem pointed out by phil@vodafone: to wit, we were
spending O(N^2) time to check dropped-ness in an N-deep join tree,
even in the case where the tree was freshly constructed and couldn't
possibly mention any dropped columns. Instead of recursing in
get_rte_attribute_is_dropped(), change the data structure definition:
the joinaliasvars list of a JOIN RTE must have a NULL Const instead
of a Var at any position that references a now-dropped column. This
costs nothing during normal parse-rewrite-plan path, and instead we
have a linear-time update to make when loading a stored rule that
might contain now-dropped columns. While at it, move the responsibility
for acquring locks on relations referenced by rules into this separate
function (which I therefore chose to call AcquireRewriteLocks).
This saves effort --- namely, duplicated lock grabs in parser and rewriter
--- in the normal path at a cost of one extra non-locked heap_open()
in the stored-rule path; seems a good tradeoff. A fringe benefit is
that it is now *much* clearer that we acquire lock on relations referenced
in rules before we make any rewriter decisions based on their properties.
(I don't know of any bug of that ilk, but it wasn't exactly clear before.)
would be evaluated only once anyway (ie, it's just a SELECT with no
FROM or an INSERT ... VALUES). The planner can't do it any faster than
the executor, so no point in an extra copying of the expression tree.
where there was also a WHERE-clause restriction that applied to the
join. The check on restrictlist == NIL is really unnecessary anyway,
because select_mergejoin_clauses already checked for and complained
about any unmergejoinable join clauses. So just take it out.
that we acquire a lock on relations added to the query due to inheritance.
Formerly, no such lock was held throughout planning, which meant that
a schema change could occur to invalidate the plan before it's even
been completed.
aren't doing anything useful (ie, neither selection nor projection).
Also, extend to SubqueryScan the hacks already in place to avoid
unnecessary ExecProject calls when the result would just be the same
tuple the subquery already delivered. This saves some overhead in
UNION and other set operations, as well as avoiding overhead for
unflatten-able subqueries. Per example from Sokolov Yura.
which is neither needed by nor related to that header. Remove the bogus
inclusion and instead include the header in those C files that actually
need it. Also fix unnecessary inclusions and bad inclusion order in
tsearch2 files.
to eliminate unnecessary deadlocks. This commit adds SELECT ... FOR SHARE
paralleling SELECT ... FOR UPDATE. The implementation uses a new SLRU
data structure (managed much like pg_subtrans) to represent multiple-
transaction-ID sets. When more than one transaction is holding a shared
lock on a particular row, we create a MultiXactId representing that set
of transactions and store its ID in the row's XMAX. This scheme allows
an effectively unlimited number of row locks, just as we did before,
while not costing any extra overhead except when a shared lock actually
has to be shared. Still TODO: use the regular lock manager to control
the grant order when multiple backends are waiting for a row lock.
Alvaro Herrera and Tom Lane.
or bitmap), use pred_test to be a little smarter about cases where a
filter clause is logically unnecessary. This may be overkill for the
plain indexscan case, but it's definitely useful for OR'd bitmap scans.
node, as this behavior is now better done as a bitmap OR indexscan.
This allows considerable simplification in nodeIndexscan.c itself as
well as several planner modules concerned with indexscan plan generation.
Also we can improve the sharing of code between regular and bitmap
indexscans, since they are now working with nigh-identical Plan nodes.
code in prepqual.c had a small drawback: the flatten_andors code was
able to cope with deeply nested AND/OR structures (like 10000 ORs in
a row), whereas eval_const_expressions tends to recurse until it
overruns the stack. Revise eval_const_expressions so that it doesn't
choke on deeply nested ANDs or ORs.
make some estimate of which available indexes to AND together, rather
than blindly taking 'em all. This could probably stand further
improvement, but it seems to do OK in simple tests.
but the code is basically working. Along the way, rewrite the entire
approach to processing OR index conditions, and make it work in join
cases for the first time ever. orindxpath.c is now basically obsolete,
but I left it in for the time being to allow easy comparison testing
against the old implementation.
logic operations during planning. Seems cleaner to create two new Path
node types, instead --- this avoids duplication of cost-estimation code.
Also, create an enable_bitmapscan GUC parameter to control use of bitmap
plans.
scans, using in-memory tuple ID bitmaps as the intermediary. The planner
frontend (path creation and cost estimation) is not there yet, so none
of this code can be executed. I have tested it using some hacked planner
code that is far too ugly to see the light of day, however. Committing
now so that the bulk of the infrastructure changes go in before the tree
drifts under me.
indexes. Replace all heap_openr and index_openr calls by heap_open
and index_open. Remove runtime lookups of catalog OID numbers in
various places. Remove relcache's support for looking up system
catalogs by name. Bulky but mostly very boring patch ...
be supported for all datatypes. Add CREATE AGGREGATE and pg_dump support
too. Add specialized min/max aggregates for bpchar, instead of depending
on text's min/max, because otherwise the possible use of bpchar indexes
cannot be recognized.
initdb forced because of catalog changes.
into indexscans on matching indexes. For the moment, it only handles
int4 and text datatypes; next step is to add a column to pg_aggregate
so that all MIN/MAX aggregates can be handled. Per my recent proposal.
decides whether to use hashed grouping instead of sort-plus-uniq
grouping. The function needs an annoyingly large number of parameters,
but this still seems like a win for legibility, since it removes over
a hundred lines from grouping_planner (which is still too big :-().
few palloc's. I also chose to eliminate the restype and restypmod fields
entirely, since they are redundant with information stored in the node's
contained expression; re-examining the expression at need seems simpler
and more reliable than trying to keep restype/restypmod up to date.
initdb forced due to change in contents of stored rules.
change saves a great deal of space in pg_proc and its primary index,
and it eliminates the former requirement that INDEX_MAX_KEYS and
FUNC_MAX_ARGS have the same value. INDEX_MAX_KEYS is still embedded
in the on-disk representation (because it affects index tuple header
size), but FUNC_MAX_ARGS is not. I believe it would now be possible
to increase FUNC_MAX_ARGS at little cost, but haven't experimented yet.
There are still a lot of vestigial references to FUNC_MAX_ARGS, which
I will clean up in a separate pass. However, getting rid of it
altogether would require changing the FunctionCallInfoData struct,
and I'm not sure I want to buy into that.
really ought to run before canonicalize_qual, because it can now produce
forms that canonicalize_qual knows how to improve (eg, NOT clauses).
Also, because eval_const_expressions already knows about flattening
nested ANDs and ORs into N-argument form, the initial flatten_andors
pass in canonicalize_qual is now completely redundant and can be
removed. This doesn't save a whole lot of code, but the time and
palloc traffic eliminated is a useful gain on large expression trees.
access: define new index access method functions 'amgetmulti' that can
fetch multiple TIDs per call. (The functions exist but are totally
untested as yet.) Since I was modifying pg_am anyway, remove the
no-longer-needed 'rel' parameter from amcostestimate functions, and
also remove the vestigial amowner column that was creating useless
work for Alvaro's shared-object-dependencies project.
Initdb forced due to changes in pg_am.
that is 'x = true' becomes 'x' and 'x = false' becomes 'NOT x'. This isn't
all that amazingly useful in itself, but it ensures that we will recognize
the different forms as being logically equivalent when checking partial
index predicates. Per example from Patrick Clery.
structs. There are many places in the planner where we were passing
both a rel and an index to subroutines, and now need only pass the
index struct. Notationally simpler, and perhaps a tad faster.
for boolean indexes. Previously we would only use such an index with
WHERE clauses like 'indexkey = true' or 'indexkey = false'. The new
code transforms the cases 'indexkey', 'NOT indexkey', 'indexkey IS TRUE',
and 'indexkey IS FALSE' into one of these. While this is only marginally
useful in itself, I intend soon to change constant-expression simplification
so that 'foo = true' and 'foo = false' are reduced to just 'foo' and
'NOT foo' ... which would lose the ability to use boolean indexes for
such queries at all, if the indexscan machinery couldn't make the
reverse transformation.
never-yet-vacuumed relation. This restores the pre-8.0 behavior of
avoiding seqscans during initial data loading, while still allowing
reasonable optimization after a table has been vacuumed. Several
regression test cases revert to 7.4-like behavior, which is probably
a good sign. Per gripes from Keith Browne and others.
grouping_planner() to preprocess_targetlist(), according to a comment
in grouping_planner(). I think the refactoring makes sense, and moves
some extraneous details out of grouping_planner().
Formerly, if such a clause contained no aggregate functions we mistakenly
treated it as equivalent to WHERE. Per spec it must cause the query to
be treated as a grouped query of a single group, the same as appearance
of aggregate functions would do. Also, the HAVING filter must execute
after aggregate function computation even if it itself contains no
aggregate functions.
on-the-fly, and thereby avoid blowing out memory when the planner has
underestimated the hash table size. Hash join will now obey the
work_mem limit with some faithfulness. Per my recent proposal
(hash aggregate part isn't done yet though).
of AND and OR clauses. The key point here is that an OR on the
predicate side has to be treated gingerly: we may be able to prove
that the OR is implied even when no one of its components is implied.
For example (x OR y) implies (x OR y OR z) even though no one of x,
y, or z can be individually proven. This code handles both the
example shown recently by Sergey Koshcheyev and the one shown last
October by Dawid Kuroczko.
indexscans involving partial indexes. These would always be dominated
by a simple indexscan on such an index, so there's no point in considering
them. Fixes overoptimism in a patch I applied last October.
it was in 7.4, and add some comments explaining why it has to be this way.
I broke it for OR'd index predicates in a fit of code cleanup last summer.
Per example from Sergey Koshcheyev.