There's never any value in giving a fully specified cache key to
SearchCatCacheList: you might as well call SearchCatCache instead,
since there could be only one match. So the maximum useful number of
key arguments is one less than the supported number of key columns.
We might as well remove the useless extra argument and save some few
bytes per call site, as well as a cycle or so per call.
I believe the reason it was coded like this is that originally, callers
had to write out all the dummy arguments in each call, and so it seemed
less confusing if SearchCatCache and SearchCatCacheList took the same
number of key arguments. But since commit e26c539e9, callers only write
their live arguments explicitly, making that a non-factor; and there's
surely been enough time for third-party modules to adapt to that coding
style. So this is only an ABI break not an API break for callers.
Per discussion with Oliver Ford, this might also make it less confusing
how to use SearchCatCacheList correctly.
Discussion: https://postgr.es/m/27788.1517069693@sss.pgh.pa.us
The following are the individual improvements:
1) Avoidance of FunctionCallInfo based function calls, replaced by
more efficient functions with a native C argument interface.
2) Don't extract columns from a cache entry's tuple whenever matching
entries - instead store them as a Datum array. This also allows to
get rid of having to build dummy tuples for negative & list
entries, and of a hack for dealing with cstring vs. text weirdness.
3) Reorder members of catcache.h struct, so imortant entries are more
likely to be on one cacheline.
4) Allowing the compiler to specialize critical SearchCatCache for a
specific number of attributes allows to unroll loops and avoid
other nkeys dependant initialization.
5) Only initializing the ScanKey when necessary, i.e. catcache misses,
greatly reduces cache unnecessary cpu cache misses.
6) Split of the cache-miss case from the hash lookup, reducing stack
allocations etc in the common case.
7) CatCTup and their corresponding heaptuple are allocated in one
piece.
This results in making cache lookups themselves roughly three times as
fast - full-system benchmarks obviously improve less than that.
I've also evaluated further techniques:
- replace open coded hash with simplehash - the list walk right now
shows up in profiles. Unfortunately it's not easy to do so safely as
an entry's memory location can change at various times, which
doesn't work well with the refcounting and cache invalidation.
- Cacheline-aligning CatCTup entries - helps some with performance,
but the win isn't big and the code for it is ugly, because the
tuples have to be freed as well.
- add more proper functions, rather than macros for
SearchSysCacheCopyN etc., but right now they don't show up in
profiles.
The reason the macro wrapper for syscache.c/h have to be changed,
rather than just catcache, is that doing otherwise would require
exposing the SysCache array to the outside. That might be a good idea
anyway, but it's for another day.
Author: Andres Freund
Reviewed-By: Robert Haas
Discussion: https://postgr.es/m/20170914061207.zxotvyopetm7lrrp@alap3.anarazel.de
Index columns are referenced by ordinal number rather than name, e.g.
CREATE INDEX coord_idx ON measured (x, y, (z + t));
ALTER INDEX coord_idx ALTER COLUMN 3 SET STATISTICS 1000;
Incompatibility note for release notes:
\d+ for indexes now also displays Stats Target
Authors: Alexander Korotkov, with contribution by Adrien NAYRAT
Review: Adrien NAYRAT, Simon Riggs
Wordsmith: Simon Riggs
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
We have now grown enough registerable syscache-invalidation callback
functions that the original assumption that there would be few of them
is causing performance problems. In particular, let's fix things so that
CallSyscacheCallbacks doesn't have to search the whole array to find
which callback(s) to invoke for a given cache ID. Preserve the original
behavior that callbacks are called in order of registration, just in
case there's someplace that depends on that (which I doubt).
In support of this, export the number of syscaches from syscache.h.
People could have found that out anyway from the enum, but adding a
#define makes that much safer.
This provides a useful additional speedup in Mathieu Fenniak's
logical-decoding test case, although we're reaching the point of
diminishing returns there. I think any further improvement will have
to come from reducing the number of cache invalidations that are
triggered in the first place. Still, we can hope that this change
gives some incremental benefit for all invalidation scenarios.
Back-patch to 9.4 where logical decoding was introduced.
Discussion: https://postgr.es/m/CAHoiPjzea6N0zuCi=+f9v_j94nfsy6y8SU7-=bp4=7qw6_i=Rg@mail.gmail.com
A test case provided by Mathieu Fenniak shows that the initial search for
the target catcache in CatalogCacheIdInvalidate consumes a very significant
amount of overhead in cases where cache invalidation is triggered but has
little useful work to do. There is no good reason for that search to exist
at all, as the index array maintained by syscache.c allows direct lookup of
the catcache from its ID. We just need a frontend function in syscache.c,
matching the division of labor for most other cache-accessing operations.
While there's more that can be done in this area, this patch alone reduces
the runtime of Mathieu's example by 2X. We can hope that it offers some
useful benefit in other cases too, although usually cache invalidation
overhead is not such a striking fraction of the total runtime.
Back-patch to 9.4 where logical decoding was introduced. It might be
worth going further back, but presently the only case we know of where
cache invalidation is really a significant burden is in logical decoding.
Also, older branches have fewer catcaches, reducing the possible benefit.
(Note: although this nominally changes catcache's API, we have always
documented CatalogCacheIdInvalidate as a private function, so I would
have little sympathy for an external module calling it directly. So
backpatching should be fine.)
Discussion: https://postgr.es/m/CAHoiPjzea6N0zuCi=+f9v_j94nfsy6y8SU7-=bp4=7qw6_i=Rg@mail.gmail.com
Add support for explicitly declared statistic objects (CREATE
STATISTICS), allowing collection of statistics on more complex
combinations that individual table columns. Companion commands DROP
STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are
added too. All this DDL has been designed so that more statistic types
can be added later on, such as multivariate most-common-values and
multivariate histograms between columns of a single table, leaving room
for permitting columns on multiple tables, too, as well as expressions.
This commit only adds support for collection of n-distinct coefficient
on user-specified sets of columns in a single table. This is useful to
estimate number of distinct groups in GROUP BY and DISTINCT clauses;
estimation errors there can cause over-allocation of memory in hashed
aggregates, for instance, so it's a worthwhile problem to solve. A new
special pseudo-type pg_ndistinct is used.
(num-distinct estimation was deemed sufficiently useful by itself that
this is worthwhile even if no further statistic types are added
immediately; so much so that another version of essentially the same
functionality was submitted by Kyotaro Horiguchi:
https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp
though this commit does not use that code.)
Author: Tomas Vondra. Some code rework by Álvaro.
Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes,
Ideriha Takeshi
Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.czhttps://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
Add functionality for a new subscription to copy the initial data in the
tables and then sync with the ongoing apply process.
For the copying, add a new internal COPY option to have the COPY source
data provided by a callback function. The initial data copy works on
the subscriber by receiving COPY data from the publisher and then
providing it locally into a COPY that writes to the destination table.
A WAL receiver can now execute full SQL commands. This is used here to
obtain information about tables and publications.
Several new options were added to CREATE and ALTER SUBSCRIPTION to
control whether and when initial table syncing happens.
Change pg_dump option --no-create-subscription-slots to
--no-subscription-connect and use the new CREATE SUBSCRIPTION
... NOCONNECT option for that.
Author: Petr Jelinek <petr.jelinek@2ndquadrant.com>
Tested-by: Erik Rijkers <er@xs4all.nl>
Move sequence metadata (start, increment, etc.) into a proper system
catalog instead of storing it in the sequence heap object. This
separates the metadata from the sequence data. Sequence metadata is now
operated on transactionally by DDL commands, whereas previously
rollbacks of sequence-related DDL commands would be ignored.
Reviewed-by: Andreas Karlsson <andreas@proxel.se>
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own. The children are called
partitions and contain all of the actual data. Each partition has an
implicit partitioning constraint. Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed. Partitions
can't have extra columns and may not allow nulls unless the parent
does. Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.
Currently, tables can be range-partitioned or list-partitioned. List
partitioning is limited to a single column, but range partitioning can
involve multiple columns. A partitioning "column" can be an
expression.
Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations. The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.
Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
This patch reduces pg_am to just two columns, a name and a handler
function. All the data formerly obtained from pg_am is now provided
in a C struct returned by the handler function. This is similar to
the designs we've adopted for FDWs and tablesample methods. There
are multiple advantages. For one, the index AM's support functions
are now simple C functions, making them faster to call and much less
error-prone, since the C compiler can now check function signatures.
For another, this will make it far more practical to define index access
methods in installable extensions.
A disadvantage is that SQL-level code can no longer see attributes
of index AMs; in particular, some of the crosschecks in the opr_sanity
regression test are no longer possible from SQL. We've addressed that
by adding a facility for the index AM to perform such checks instead.
(Much more could be done in that line, but for now we're content if the
amvalidate functions more or less replace what opr_sanity used to do.)
We might also want to expose some sort of reporting functionality, but
this patch doesn't do that.
Alexander Korotkov, reviewed by Petr Jelínek, and rather heavily
editorialized on by me.
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM. (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.) Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type. This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.
Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.
Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.
Back-patch to 9.5 so that we don't have to support the original API
in production.
When we invalidate the relcache entry for a system catalog or index, we
must also delete the relcache "init file" if the init file contains a copy
of that rel's entry. The old way of doing this relied on a specially
maintained list of the OIDs of relations present in the init file: we made
the list either when reading the file in, or when writing the file out.
The problem is that when writing the file out, we included only rels
present in our local relcache, which might have already suffered some
deletions due to relcache inval events. In such cases we correctly decided
not to overwrite the real init file with incomplete data --- but we still
used the incomplete initFileRelationIds list for the rest of the current
session. This could result in wrong decisions about whether the session's
own actions require deletion of the init file, potentially allowing an init
file created by some other concurrent session to be left around even though
it's been made stale.
Since we don't support changing the schema of a system catalog at runtime,
the only likely scenario in which this would cause a problem in the field
involves a "vacuum full" on a catalog concurrently with other activity, and
even then it's far from easy to provoke. Remarkably, this has been broken
since 2002 (in commit 786340441706ac1957a031f11ad1c2e5b6e18314), but we had
never seen a reproducible test case until recently. If it did happen in
the field, the symptoms would probably involve unexpected "cache lookup
failed" errors to begin with, then "could not open file" failures after the
next checkpoint, as all accesses to the affected catalog stopped working.
Recovery would require manually removing the stale "pg_internal.init" file.
To fix, get rid of the initFileRelationIds list, and instead consult
syscache.c's list of relations used in catalog caches to decide whether a
relation is included in the init file. This should be a tad more efficient
anyway, since we're replacing linear search of a list with ~100 entries
with a binary search. It's a bit ugly that the init file contents are now
so directly tied to the catalog caches, but in practice that won't make
much difference.
Back-patch to all supported branches.
Add a TABLESAMPLE clause to SELECT statements that allows
user to specify random BERNOULLI sampling or block level
SYSTEM sampling. Implementation allows for extensible
sampling functions to be written, using a standard API.
Basic version follows SQLStandard exactly. Usable
concrete use cases for the sampling API follow in later
commits.
Petr Jelinek
Reviewed by Michael Paquier and Simon Riggs
When implementing a replication solution ontop of logical decoding, two
related problems exist:
* How to safely keep track of replication progress
* How to change replication behavior, based on the origin of a row;
e.g. to avoid loops in bi-directional replication setups
The solution to these problems, as implemented here, consist out of
three parts:
1) 'replication origins', which identify nodes in a replication setup.
2) 'replication progress tracking', which remembers, for each
replication origin, how far replay has progressed in a efficient and
crash safe manner.
3) The ability to filter out changes performed on the behest of a
replication origin during logical decoding; this allows complex
replication topologies. E.g. by filtering all replayed changes out.
Most of this could also be implemented in "userspace", e.g. by inserting
additional rows contain origin information, but that ends up being much
less efficient and more complicated. We don't want to require various
replication solutions to reimplement logic for this independently. The
infrastructure is intended to be generic enough to be reusable.
This infrastructure also replaces the 'nodeid' infrastructure of commit
timestamps. It is intended to provide all the former capabilities,
except that there's only 2^16 different origins; but now they integrate
with logical decoding. Additionally more functionality is accessible via
SQL. Since the commit timestamp infrastructure has also been introduced
in 9.5 (commit 73c986add) changing the API is not a problem.
For now the number of origins for which the replication progress can be
tracked simultaneously is determined by the max_replication_slots
GUC. That GUC is not a perfect match to configure this, but there
doesn't seem to be sufficient reason to introduce a separate new one.
Bumps both catversion and wal page magic.
Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer
Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer
Discussion: 20150216002155.GI15326@awork2.anarazel.de,
20140923182422.GA15776@alap3.anarazel.de,
20131114172632.GE7522@alap2.anarazel.de
This provides a mechanism for specifying conversions between SQL data
types and procedural languages. As examples, there are transforms
for hstore and ltree for PL/Perl and PL/Python.
reviews by Pavel Stěhule and Andres Freund
If the hash table backing a catalog cache becomes too full (fillfactor > 2),
enlarge it. A new buckets array, double the size of the old, is allocated,
and all entries in the old hash are moved to the right bucket in the new
hash.
This has two benefits. First, cache lookups don't get so expensive when
there are lots of entries in a cache, like if you access hundreds of
thousands of tables. Second, we can make the (initial) sizes of the caches
much smaller, which saves memory.
This patch dials down the initial sizes of the catcaches. The new sizes are
chosen so that a backend that only runs a few basic queries still won't need
to enlarge any of them.
SnapshotNow scans have the undesirable property that, in the face of
concurrent updates, the scan can fail to see either the old or the new
versions of the row. In many cases, we work around this by requiring
DDL operations to hold AccessExclusiveLock on the object being
modified; in some cases, the existing locking is inadequate and random
failures occur as a result. This commit doesn't change anything
related to locking, but will hopefully pave the way to allowing lock
strength reductions in the future.
The major issue has held us back from making this change in the past
is that taking an MVCC snapshot is significantly more expensive than
using a static special snapshot such as SnapshotNow. However, testing
of various worst-case scenarios reveals that this problem is not
severe except under fairly extreme workloads. To mitigate those
problems, we avoid retaking the MVCC snapshot for each new scan;
instead, we take a new snapshot only when invalidation messages have
been processed. The catcache machinery already requires that
invalidation messages be sent before releasing the related heavyweight
lock; else other backends might rely on locally-cached data rather
than scanning the catalog at all. Thus, making snapshot reuse
dependent on the same guarantees shouldn't break anything that wasn't
already subtly broken.
Patch by me. Review by Michael Paquier and Andres Freund.
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
They don't actually do anything yet; that will get fixed in a
follow-on commit. But this gets the basic infrastructure in place,
including CREATE/ALTER/DROP EVENT TRIGGER; support for COMMENT,
SECURITY LABEL, and ALTER EXTENSION .. ADD/DROP EVENT TRIGGER;
pg_dump and psql support; and documentation for the anticipated
initial feature set.
Dimitri Fontaine, with review and a bunch of additional hacking by me.
Thom Brown extensively reviewed earlier versions of this patch set,
but there's not a whole lot of that code left in this commit, as it
turns out.
Now that cache invalidation callbacks get only a hash value, and not a
tuple TID (per commits 632ae6829f7abda34e15082c91d9dfb3fc0f298b and
b5282aa893e565b7844f8237462cb843438cdd5e), the only way they can restrict
what they invalidate is to know what the hash values mean. setrefs.c was
doing this via a hard-wired assumption but that seems pretty grotty, and
it'll only get worse as more cases come up. So let's expose a calculation
function that takes the same parameters as SearchSysCache. Per complaint
from Marko Kreen.
This patch is almost entirely cosmetic --- mostly cleaning up a lot of
neglected comments, and fixing code layout problems in places where the
patch made lines too long and then pgindent did weird things with that.
I did find a bug-of-omission in equalTupleDescs().
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
Foreign tables are a core component of SQL/MED. This commit does
not provide a working SQL/MED infrastructure, because foreign tables
cannot yet be queried. Support for foreign table scans will need to
be added in a future patch. However, this patch creates the necessary
system catalog structure, syntax support, and support for ancillary
operations such as COMMENT and SECURITY LABEL.
Shigeru Hanada, heavily revised by Robert Haas
This commit adds columns amoppurpose and amopsortfamily to pg_amop, and
column amcanorderbyop to pg_am. For the moment all the entries in
amcanorderbyop are "false", since the underlying support isn't there yet.
Also, extend the CREATE OPERATOR CLASS/ALTER OPERATOR FAMILY commands with
[ FOR SEARCH | FOR ORDER BY sort_operator_family ] clauses to allow the new
columns of pg_amop to be populated, and create pg_dump support for dumping
that information.
I also added some documentation, although it's perhaps a bit premature
given that the feature doesn't do anything useful yet.
Teodor Sigaev, Robert Haas, Tom Lane
The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4). This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.
Design and review by Tom Lane.
needed by nothing else.
The restructuring I just finished doing on cache management exposed to me how
silly this routine was. Its function was to go into the catcache and blow
away all entries related to a given relation when there was a relcache flush
on that relation. However, there is no point in removing a catcache entry
if the catalog row it represents is still valid --- and if it isn't valid,
there must have been a catcache entry flush on it, because that's triggered
directly by heap_update or heap_delete on the catalog row. So this routine
accomplished nothing except to blow away valid cache entries that we'd very
likely be wanting in the near future to help reconstruct the relcache entry.
Dumb.
On top of which, it required a subtle and easy-to-get-wrong attribute in
syscache definitions, ie, the column containing the OID of the related
relation if any. Removing that is a very useful maintenance simplification.