Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Now that we use CRC-32C in WAL and the control file, the "traditional" and
"legacy" CRC-32 variants are not used in any frontend programs anymore.
Move the code for those back from src/common to src/backend/utils/hash.
Also move the slicing-by-8 implementation (back) to src/port. This is in
preparation for next patch that will add another implementation that uses
Intel SSE 4.2 instructions to calculate CRC-32C, where available.
To get CRC functionality in a client program, you now need to link with
libpgcommon instead of libpgport. The CRC code has nothing to do with
portability, so libpgcommon is a better home. (libpgcommon didn't exist
when pg_crc.c was originally moved to src/port.)
Remove the possibility to get CRC functionality by just #including
pg_crc_tables.h. I'm not aware of any extensions that actually did that and
couldn't simply link with libpgcommon.
This also moves the pg_crc.h header file from src/include/utils to
src/include/common, which will require changes to any external programs
that currently does #include "utils/pg_crc.h". That seems acceptable, as
include/common is clearly the right home for it now, and the change needed
to any such programs is trivial.
The old algorithm was found to not be the usual CRC-32 algorithm, used by
Ethernet et al. We were using a non-reflected lookup table with code meant
for a reflected lookup table. That's a strange combination that AFAICS does
not correspond to any bit-wise CRC calculation, which makes it difficult to
reason about its properties. Although it has worked well in practice, seems
safer to use a well-known algorithm.
Since we're changing the algorithm anyway, we might as well choose a
different polynomial. The Castagnoli polynomial has better error-correcting
properties than the traditional CRC-32 polynomial, even if we had
implemented it correctly. Another reason for picking that is that some new
CPUs have hardware support for calculating CRC-32C, but not CRC-32, let
alone our strange variant of it. This patch doesn't add any support for such
hardware, but a future patch could now do that.
The old algorithm is kept around for tsquery and pg_trgm, which use the
values in indexes that need to remain compatible so that pg_upgrade works.
While we're at it, share the old lookup table for CRC-32 calculation
between hstore, ltree and core. They all use the same table, so might as
well.
we're not going to support that anymore.
I did keep the 64-bit-CRC-with-32-bit-arithmetic code, since it has a
performance excuse to live. It's a bit moot since that's all ifdef'd
out, of course.
Instead of a separate CRC on each backup block, include backup blocks
in their parent WAL record's CRC; this is important to ensure that the
backup block really goes with the WAL record, ie there was not a page
tear right at the start of the backup block. Implement a simple form
of compression of backup blocks: drop any run of zeroes starting at
pd_lower, so as not to store the unused 'hole' that commonly exists in
PG heap and index pages. Tweak PageRepairFragmentation and related
routines to ensure they keep the unused space zeroed, so that the above
compression method remains effective. All per recent discussions.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
accepts nnnLL syntax for long long constants. If so, decorate the CRC64
constants with LL to avoid warnings and/or erroneous results from certain
non-standards-compliant compilers.
* Store two past checkpoint locations, not just one, in pg_control.
On startup, we fall back to the older checkpoint if the newer one
is unreadable. Also, a physical copy of the newest checkpoint record
is kept in pg_control for possible use in disaster recovery (ie,
complete loss of pg_xlog). Also add a version number for pg_control
itself. Remove archdir from pg_control; it ought to be a GUC
parameter, not a special case (not that it's implemented yet anyway).
* Suppress successive checkpoint records when nothing has been entered
in the WAL log since the last one. This is not so much to avoid I/O
as to make it actually useful to keep track of the last two
checkpoints. If the things are right next to each other then there's
not a lot of redundancy gained...
* Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs
on alternate bytes. Polynomial borrowed from ECMA DLT1 standard.
* Fix XLOG record length handling so that it will work at BLCKSZ = 32k.
* Change XID allocation to work more like OID allocation. (This is of
dubious necessity, but I think it's a good idea anyway.)
* Fix a number of minor bugs, such as off-by-one logic for XLOG file
wraparound at the 4 gig mark.
* Add documentation and clean up some coding infelicities; move file
format declarations out to include files where planned contrib
utilities can get at them.
* Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or
every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also
possible to force a checkpoint by sending SIGUSR1 to the postmaster
(undocumented feature...)
* Defend against kill -9 postmaster by storing shmem block's key and ID
in postmaster.pid lockfile, and checking at startup to ensure that no
processes are still connected to old shmem block (if it still exists).
* Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency
stop, for symmetry with postmaster and xlog utilities. Clean up signal
handling in bootstrap.c so that xlog utilities launched by postmaster
will react to signals better.
* Standalone bootstrap now grabs lockfile in target directory, as added
insurance against running it in parallel with live postmaster.