This patch fixes the planner so that it can generate nestloop-with-
inner-indexscan plans even with one or more levels of joining between
the indexscan and the nestloop join that is supplying the parameter.
The executor was fixed to handle such cases some time ago, but the
planner was not ready. This should improve our plans in many situations
where join ordering restrictions formerly forced complete table scans.
There is probably a fair amount of tuning work yet to be done, because
of various heuristics that have been added to limit the number of
parameterized paths considered. However, we are not going to find out
what needs to be adjusted until the code gets some real-world use, so
it's time to get it in there where it can be tested easily.
Note API change for index AM amcostestimate functions. I'm not aware of
any non-core index AMs, but if there are any, they will need minor
adjustments.
The original implementation of this interpreted it as a kind of
"inheritance" facility and named all the internal structures
accordingly. This turned out to be very confusing, because it has
nothing to do with the INHERITS feature. So rename all the internal
parser infrastructure, update the comments, adjust the error messages,
and split up the regression tests.
This gets rid of an impressive amount of duplicative code, with only
minimal behavior changes. DROP FOREIGN DATA WRAPPER now requires object
ownership rather than superuser privileges, matching the documentation
we already have. We also eliminate the historical warning about dropping
a built-in function as unuseful. All operations are now performed in the
same order for all object types handled by dropcmds.c.
KaiGai Kohei, with minor revisions by me
This commit changes index-only scans so that data is read directly from the
index tuple without first generating a faux heap tuple. The only immediate
benefit is that indexes on system columns (such as OID) can be used in
index-only scans, but this is necessary infrastructure if we are ever to
support index-only scans on expression indexes. The executor is now ready
for that, though the planner still needs substantial work to recognize
the possibility.
To do this, Vars in index-only plan nodes have to refer to index columns
not heap columns. I introduced a new special varno, INDEX_VAR, to mark
such Vars to avoid confusion. (In passing, this commit renames the two
existing special varnos to OUTER_VAR and INNER_VAR.) This allows
ruleutils.c to handle them with logic similar to what we use for subplan
reference Vars.
Since index-only scans are now fundamentally different from regular
indexscans so far as their expression subtrees are concerned, I also chose
to change them to have their own plan node type (and hence, their own
executor source file).
Somebody thought it'd be cute to invent a set of Node tag numbers that were
defined independently of, and indeed conflicting with, the main tag-number
list. While this accidentally failed to fail so far, it would certainly
lead to trouble as soon as anyone wanted to, say, apply copyObject to these
node types. Clang was already complaining about the use of makeNode on
these tags, and I think quite rightly so. Fix by pushing these node
definitions into the mainstream, including putting replnodes.h where it
belongs.
All expression nodes now have an explicit output-collation field, unless
they are known to only return a noncollatable data type (such as boolean
or record). Also, nodes that can invoke collation-aware functions store
a separate field that is the collation value to pass to the function.
This avoids confusion that arises when a function has collatable inputs
and noncollatable output type, or vice versa.
Also, replace the parser's on-the-fly collation assignment method with
a post-pass over the completed expression tree. This allows us to use
a more complex (and hopefully more nearly spec-compliant) assignment
rule without paying for it in extra storage in every expression node.
Fix assorted bugs in the planner's handling of collations by making
collation one of the defining properties of an EquivalenceClass and
by converting CollateExprs into discardable RelabelType nodes during
expression preprocessing.
CollateClause is now used only in raw grammar output, and CollateExpr after
parse analysis. This is for clarity and to avoid carrying collation names
in post-analysis parse trees: that's both wasteful and possibly misleading,
since the collation's name could be changed while the parsetree still
exists.
Also, clean up assorted infelicities and omissions in processing of the
node type.
This commit provides the core code and documentation needed. A contrib
module test case will follow shortly.
Shigeru Hanada, Jan Urbanski, Heikki Linnakangas
This follows recent discussions, so it's quite a bit different from
Dimitri's original. There will probably be more changes once we get a bit
of experience with it, but let's get it in and start playing with it.
This is still just core code. I'll start converting contrib modules
shortly.
Dimitri Fontaine and Tom Lane
This is an essential component of making the extension feature usable;
first because it's needed in the process of converting an existing
installation containing "loose" objects of an old contrib module into
the extension-based world, and second because we'll have to use it
in pg_dump --binary-upgrade, as per recent discussion.
Loosely based on part of Dimitri Fontaine's ALTER EXTENSION UPGRADE
patch.
This patch adds the server infrastructure to support extensions.
There is still one significant loose end, namely how to make it play nice
with pg_upgrade, so I am not yet committing the changes that would make
all the contrib modules depend on this feature.
In passing, fix a disturbingly large amount of breakage in
AlterObjectNamespace() and callers.
Dimitri Fontaine, reviewed by Anssi Kääriäinen,
Itagaki Takahiro, Tom Lane, and numerous others
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
Foreign tables are a core component of SQL/MED. This commit does
not provide a working SQL/MED infrastructure, because foreign tables
cannot yet be queried. Support for foreign table scans will need to
be added in a future patch. However, this patch creates the necessary
system catalog structure, syntax support, and support for ancillary
operations such as COMMENT and SECURITY LABEL.
Shigeru Hanada, heavily revised by Robert Haas
Per my recent proposal, get rid of all the direct inspection of indexes
and manual generation of paths in planagg.c. Instead, set up
EquivalenceClasses for the aggregate argument expressions, and let the
regular path generation logic deal with creating paths that can satisfy
those sort orders. This makes planagg.c a bit more visible to the rest
of the planner than it was originally, but the approach is basically a lot
cleaner than before. A major advantage of doing it this way is that we get
MIN/MAX optimization on inheritance trees (using MergeAppend of indexscans)
practically for free, whereas in the old way we'd have had to add a whole
lot more duplicative logic.
One small disadvantage of this approach is that MIN/MAX aggregates can no
longer exploit partial indexes having an "x IS NOT NULL" predicate, unless
that restriction or something that implies it is specified in the query.
The previous implementation was able to use the added "x IS NOT NULL"
condition as an extra predicate proof condition, but in this version we
rely entirely on indexes that are considered usable by the main planning
process. That seems a fair tradeoff for the simplicity and functionality
gained.
After much expenditure of effort, we've got this to the point where the
performance penalty is pretty minimal in typical cases.
Andrew Dunstan, reviewed by Brendan Jurd, Dean Rasheed, and Tom Lane
This patch eliminates the former need to sort the output of an Append scan
when an ordered scan of an inheritance tree is wanted. This should be
particularly useful for fast-start cases such as queries with LIMIT.
Original patch by Greg Stark, with further hacking by Hans-Jurgen Schonig,
Robert Haas, and Tom Lane.
This is intended as infrastructure to support integration with label-based
mandatory access control systems such as SE-Linux. Further changes (mostly
hooks) will be needed, but this is a big chunk of it.
KaiGai Kohei and Robert Haas
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels. This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.
ExecReScan's second parameter is now unused, so it's removed.
This patch only supports seq_page_cost and random_page_cost as parameters,
but it provides the infrastructure to scalably support many more.
In particular, we may want to add support for effective_io_concurrency,
but I'm leaving that as future work for now.
Thanks to Tom Lane for design help and Alvaro Herrera for the review.
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
execMain.c and into a new plan node type LockRows. Like the recent change
to put table updating into a ModifyTable plan node, this increases planning
flexibility by allowing the operations to occur below the top level of the
plan tree. It's necessary in any case to restore the previous behavior of
having FOR UPDATE locking occur before ModifyTable does.
This partially refactors EvalPlanQual to allow multiple rows-under-test
to be inserted into the EPQ machinery before starting an EPQ test query.
That isn't sufficient to fix EPQ's general bogosity in the face of plans
that return multiple rows per test row, though. Since this patch is
mostly about getting some plan node infrastructure in place and not about
fixing ten-year-old bugs, I will leave EPQ improvements for another day.
Another behavioral change that we could now think about is doing FOR UPDATE
before LIMIT, but that too seems like it should be treated as a followon
patch.
They are now handled by a new plan node type called ModifyTable, which is
placed at the top of the plan tree. In itself this change doesn't do much,
except perhaps make the handling of RETURNING lists and inherited UPDATEs a
tad less klugy. But it is necessary preparation for the intended extension of
allowing RETURNING queries inside WITH.
Marko Tiikkaja
the privileges that will be applied to subsequently-created objects.
Such adjustments are always per owning role, and can be restricted to objects
created in particular schemas too. A notable benefit is that users can
override the traditional default privilege settings, eg, the PUBLIC EXECUTE
privilege traditionally granted by default for functions.
Petr Jelinek
to create a function for it.
Procedural languages now have an additional entry point, namely a function
to execute an inline code block. This seemed a better design than trying
to hide the transient-ness of the code from the PL. As of this patch, only
plpgsql has an inline handler, but probably people will soon write handlers
for the other standard PLs.
In passing, remove the long-dead LANCOMPILER option of CREATE LANGUAGE.
Petr Jelinek
is unique and is not referenced above the join. In this case the inner
side doesn't affect the query result and can be thrown away entirely.
Although perhaps nobody would ever write such a thing by hand, it's
a reasonably common case in machine-generated SQL.
The current implementation only recognizes the case where the inner side
is a simple relation with a unique index matching the query conditions.
This is enough for the use-cases that have been shown so far, but we
might want to try to handle other cases later.
Robert Haas, somewhat rewritten by Tom
This was foreseen to be a good idea long ago, but nobody had got round
to doing it. The recent patch for deferred unique constraints made
transformConstraintAttrs() ugly enough that I decided it was time.
This change will also greatly simplify parsing of deferred CHECK constraints,
if anyone ever gets around to implementing that.
While at it, add a location field to Constraint, and use that to provide
an error cursor for some of the constraint-related error messages.
of adding optional namespace and action fields to DefElem. Having three
node types that do essentially the same thing bloats the code and leads
to errors of confusion, such as in yesterday's bug report from Khee Chin.
making pull_up_sublinks() construct a full-blown JoinExpr tree representation
of IN/EXISTS SubLinks that it is able to convert to semi or anti joins.
This makes pull_up_sublinks() a shade more complex, but the gain in semantic
clarity is worth it. I still have more to do in this area to address the
previously-discussed problems, but this commit in itself fixes at least one
bug in HEAD, as shown by added regression test case.
qualifier, and add support for this in pg_dump.
This allows TOAST tables to have user-defined fillfactor, and will also
enable us to move the autovacuum parameters to reloptions without taking
away the possibility of setting values for TOAST tables.
This doesn't do any remote or external things yet, but it gives modules
like plproxy and dblink a standardized and future-proof system for
managing their connection information.
Martin Pihlak and Peter Eisentraut
though it is an inner rather than outer join type. This essentially means
that we don't bother to separate "pushed down" qual conditions from actual
join quals at a semijoin plan node; which is okay because the restrictions of
SQL syntax make it impossible to have a pushed-down qual that references the
inner side of a semijoin. This allows noticeably better optimization of
IN/EXISTS cases than we had before, since the equivalence-class machinery can
now use those quals. Also fix a couple of other mistakes that had essentially
disabled the ability to unique-ify the inner relation and then join it to just
a subset of the left-hand relations. An example case using the regression
database is
select * from tenk1 a, tenk1 b
where (a.unique1,b.unique2) in (select unique1,unique2 from tenk1 c);
which is planned reasonably well by 8.3 and earlier but had been forcing a
cartesian join of a/b in CVS HEAD.
that represent some expression that we desire to compute below the top level
of the plan, and then let that value "bubble up" as though it were a plain
Var (ie, a column value).
The immediate application is to allow sub-selects to be flattened even when
they are below an outer join and have non-nullable output expressions.
Formerly we couldn't flatten because such an expression wouldn't properly
go to NULL when evaluated above the outer join. Now, we wrap it in a
PlaceHolderVar and arrange for the actual evaluation to occur below the outer
join. When the resulting Var bubbles up through the join, it will be set to
NULL if necessary, yielding the correct results. This fixes a planner
limitation that's existed since 7.1.
In future we might want to use this mechanism to re-introduce some form of
Hellerstein's "expensive functions" optimization, ie place the evaluation of
an expensive function at the most suitable point in the plan tree.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.
There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly. But let's land
the patch now so we can get on with other development.
Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
when user-defined functions used in a plan are modified. Also invalidate
plans when schemas, operators, or operator classes are modified; but for these
cases we just invalidate everything rather than tracking exact dependencies,
since these types of objects seldom change in a production database.
Tom Lane; loosely based on a patch by Martin Pihlak.
SELECT foo.*) so that it cannot be confused with a quoted identifier "*".
Instead create a separate node type A_Star to represent this notation.
Per pgsql-hackers discussion of 2007-Sep-27.
syntax to avoid a useless store into a global variable. Per experimentation,
this works better than my original thought of trying to push the code into
an out-of-line subroutine.
subqueries into the same thing you'd have gotten from IN (except always with
unknownEqFalse = true, so as to get the proper semantics for an EXISTS).
I believe this fixes the last case within CVS HEAD in which an EXISTS could
give worse performance than an equivalent IN subquery.
The tricky part of this is that if the upper query probes the EXISTS for only
a few rows, the hashing implementation can actually be worse than the default,
and therefore we need to make a cost-based decision about which way to use.
But at the time when the planner generates plans for subqueries, it doesn't
really know how many times the subquery will be executed. The least invasive
solution seems to be to generate both plans and postpone the choice until
execution. Therefore, in a query that has been optimized this way, EXPLAIN
will show two subplans for the EXISTS, of which only one will actually get
executed.
There is a lot more that could be done based on this infrastructure: in
particular it's interesting to consider switching to the hash plan if we start
out using the non-hashed plan but find a lot more upper rows going by than we
expected. I have therefore left some minor inefficiencies in place, such as
initializing both subplans even though we will currently only use one.