When we create an Append node, we can spread out the workers over the
subplans instead of piling on to each subplan one at a time, which
should typically be a bit more efficient, both because the startup
cost of any plan executed entirely by one worker is paid only once and
also because of reduced contention. We can also construct Append
plans using a mix of partial and non-partial subplans, which may allow
for parallelism in places that otherwise couldn't support it.
Unfortunately, this patch doesn't handle the important case of
parallelizing UNION ALL by running each branch in a separate worker;
the executor infrastructure is added here, but more planner work is
needed.
Amit Khandekar, Robert Haas, Amul Sul, reviewed and tested by
Ashutosh Bapat, Amit Langote, Rafia Sabih, Amit Kapila, and
Rajkumar Raghuwanshi.
Discussion: http://postgr.es/m/CAJ3gD9dy0K_E8r727heqXoBmWZ83HwLFwdcaSSmBQ1+S+vRuUQ@mail.gmail.com
When a Gather or Gather Merge node is started and stopped multiple
times, the old code wouldn't reset the shared state between executions,
potentially resulting in dramatically inflated instrumentation data
for nodes beneath it. (The per-worker instrumentation ended up OK,
I think, but the overall totals were inflated.)
Report by hubert depesz lubaczewski. Analysis and fix by Amit Kapila,
reviewed and tweaked a bit by me.
Discussion: http://postgr.es/m/20171127175631.GA405@depesz.com
If a hash join appears in a parallel query, there may be no hash table
available for explain.c to inspect even though a hash table may have
been built in other processes. This could happen either because
parallel_leader_participation was set to off or because the leader
happened to hit the end of the outer relation immediately (even though
the complete relation is not empty) and decided not to build the hash
table.
Commit bf11e7ee introduced a way for workers to exchange
instrumentation via the DSM segment for Sort nodes even though they
are not parallel-aware. This commit does the same for Hash nodes, so
that explain.c has a way to find instrumentation data from an
arbitrary participant that actually built the hash table.
Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm%3D3DUQC2-z252N55eOcZBer6DPdM%3DFzrxH9dZc5vYLsjaA%40mail.gmail.com
Currently, there are no known consequences of this oversight, so no
back-patch. Several of the EXEC_FLAG_* constants aren't usable in
parallel mode anyway, and potential problems related to the presence
or absence of OIDs (see EXEC_FLAG_WITH_OIDS, EXEC_FLAG_WITHOUT_OIDS)
seem at present to be masked by the unconditional projection step
performed by Gather and Gather Merge. In general, however, it seems
important that all participants agree on the values of these flags,
which modify executor behavior globally, and a pending patch to skip
projection in Gather (Merge) would be outright broken in certain cases
without this fix.
Patch by me, based on investigation of a test case provided by Amit
Kapila. This patch was also reviewed by Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoZ0ZL=cesZFq8c9NnfK6bqy-wwUd3_74iYGodYrSoQ7Fw@mail.gmail.com
Previously, executor nodes running in parallel worker processes didn't
have access to the dsm_segment object used for parallel execution. In
order to support resource management based on DSM segment lifetime,
they need that. So create a ParallelWorkerContext object to hold it
and pass it to all InitializeWorker functions.
Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers. This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe. We do - in this case - lose the
optimization that the value is only computed if it's actually used. An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node. At some point in the future, we
might want to consider both approaches.
Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques. But this is a good start.
Amit Kapila, reviewed and revised by me. Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.
Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
This takes advantage of the infrastructure introduced by commit
81c5e46c490e2426db243eada186995da5bb0ba7 to greatly reduce the
likelihood that two different queries will end up with the same query
ID. It's still possible, of course, but whereas before it the chances
of a collision reached 25% around 50,000 queries, it will now take
more than 3 billion queries.
Backward incompatibility: Because the type exposed at the SQL level is
int8, users may now see negative query IDs in the pg_stat_statements
view (and also, query IDs more than 4 billion, which was the old
limit).
Patch by me, reviewed by Michael Paquier and Peter Geoghegan.
Discussion: http://postgr.es/m/CA+TgmobG_Kp4cBKFmsznUAaM1GWW6hhRNiZC0KjRMOOeYnz5Yw@mail.gmail.com
It is equivalent in ANSI C to write (*funcptr) () and funcptr(). These
two styles have been applied inconsistently. After discussion, we'll
use the more verbose style for plain function pointer variables, to make
it clear that it's a variable, and the shorter style when the function
pointer is in a struct (s.func() or s->func()), because then it's clear
that it's not a plain function name, and otherwise the excessive
punctuation makes some of those invocations hard to read.
Discussion: https://www.postgresql.org/message-id/f52c16db-14ed-757d-4b48-7ef360b1631d@2ndquadrant.com
Move the responsibility for creating/destroying TupleQueueReaders into
execParallel.c, to avoid duplicative coding in nodeGather.c and
nodeGatherMerge.c. Also, instead of having DestroyTupleQueueReader do
shm_mq_detach, do it in the caller (which is now only ExecParallelFinish).
This means execParallel.c does both the attaching and detaching of the
tuple-queue-reader shm_mqs, which seems less weird than the previous
arrangement.
These changes also eliminate a vestigial memory leak (of the pei->tqueue
array). It's now demonstrable that rescans of Gather or GatherMerge don't
leak memory.
Discussion: https://postgr.es/m/8670.1504192177@sss.pgh.pa.us
Previously, the parallel executor logic did reinitialization of shared
state within the ExecReScan code for parallel-aware scan nodes. This is
problematic, because it means that the ExecReScan call has to occur
synchronously (ie, during the parent Gather node's ReScan call). That is
swimming very much against the tide so far as the ExecReScan machinery is
concerned; the fact that it works at all today depends on a lot of fragile
assumptions, such as that no plan node between Gather and a parallel-aware
scan node is parameterized. Another objection is that because ExecReScan
might be called in workers as well as the leader, hacky extra tests are
needed in some places to prevent unwanted shared-state resets.
Hence, let's separate this code into two functions, a ReInitializeDSM
call and the ReScan call proper. ReInitializeDSM is called only in
the leader and is guaranteed to run before we start new workers.
ReScan is returned to its traditional function of resetting only local
state, which means that ExecReScan's usual habits of delaying or
eliminating child rescan calls are safe again.
As with the preceding commit 7df2c1f8d, it doesn't seem to be necessary
to make these changes in 9.6, which is a good thing because the FDW and
CustomScan APIs are impacted.
Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
Up until now, when parallel query was used, no details about the
sort method or space used by the workers were available; details
were shown only for any sorting done by the leader. Fix that.
Commit 1177ab1dabf72bafee8f19d904cee3a299f25892 forced the test case
added by commit 1f6d515a67ec98194c23a5db25660856c9aab944 to run
without parallelism; now that we have this infrastructure, allow
that again, with a little tweaking to make it pass with and without
force_parallel_mode.
Robert Haas and Tom Lane
Discussion: http://postgr.es/m/CA+Tgmoa2VBZW6S8AAXfhpHczb=Rf6RqQ2br+zJvEgwJ0uoD_tQ@mail.gmail.com
If we only need, say, 10 tuples in total, then we certainly don't need
more than 10 tuples from any single process. Pushing down the limit
lets workers exit early when possible. For Gather Merge, there is
an additional benefit: a Sort immediately below the Gather Merge can
be done as a bounded sort if there is an applicable limit.
Robert Haas and Tom Lane
Discussion: http://postgr.es/m/CA+TgmoYa3QKKrLj5rX7UvGqhH73G1Li4B-EKxrmASaca2tFu9Q@mail.gmail.com
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Given the possibility of race conditions and so on, it seems entirely
unsafe to just assume that shm_toc_lookup() always finds the key it's
looking for --- but that was exactly what all but one call site were
doing. To fix, add a "bool noError" argument, similarly to what we
have in many other functions, and throw an error on an unexpected
lookup failure. Remove now-redundant Asserts that a rather random
subset of call sites had.
I doubt this will throw any light on buildfarm member lorikeet's
recent failures, because if an unnoticed lookup failure were involved,
you'd kind of expect a null-pointer-dereference crash rather than the
observed symptom. But you never know ... and this is better coding
practice even if it never catches anything.
Discussion: https://postgr.es/m/9697.1496675981@sss.pgh.pa.us
We'd already recognized that we can't pass function pointers across process
boundaries for functions in loadable modules, since a shared library could
get loaded at different addresses in different processes. But actually the
practice doesn't work for functions in the core backend either, if we're
using EXEC_BACKEND. This is the cause of recent failures on buildfarm
member culicidae. Switch to passing a string function name in all cases.
Something like this needs to be back-patched into 9.6, but let's see
if the buildfarm likes it first.
Petr Jelinek, with a bunch of basically-cosmetic adjustments by me
Discussion: https://postgr.es/m/548f9c1d-eafa-e3fa-9da8-f0cc2f654e60@2ndquadrant.com
Commit 5e6d8d2bb allowed parallel workers to execute parallel-safe
subplans, but it transmitted the query's entire list of subplans to
the worker(s). Since execMain.c blindly does ExecInitNode and later
ExecEndNode on every list element, this resulted in parallel-unsafe plan
nodes nonetheless getting started up and shut down in parallel workers.
That seems mostly harmless as far as core plan node types go (but
maybe not so much for Gather?). But it resulted in postgres_fdw
opening and then closing extra remote connections, and it's likely
that other non-parallel-safe FDWs or custom scan providers would have
worse reactions.
To fix, just make ExecSerializePlan replace parallel-unsafe subplans
with NULLs in the cut-down plan tree that it transmits to workers.
This relies on ExecInitNode and ExecEndNode to do nothing on NULL
input, but they do anyway. If anything else is touching the dropped
subplans in a parallel worker, that would be a bug to be fixed.
(This thus provides a strong guarantee that we won't try to do
something with a parallel-unsafe subplan in a worker.)
This is, I think, the last fix directly occasioned by Andreas Seltenreich's
bug report of a few days ago.
Tom Lane and Amit Kapila
Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
Previously, it was unsafe to execute a plan in parallel if
ExecutorRun() might be called with a non-zero row count. However,
it's quite easy to fix things up so that we can support that case,
provided that it is known that we will never call ExecutorRun() a
second time for the same QueryDesc. Add infrastructure to signal
this, and cross-checks to make sure that a caller who claims this is
true doesn't later reneg.
While that pattern never happens with queries received directly from a
client -- there's no way to know whether multiple Execute messages
will be sent unless the first one requests all the rows -- it's pretty
common for queries originating from procedural languages, which often
limit the result to a single tuple or to a user-specified number of
tuples.
This commit doesn't actually enable parallelism in any additional
cases, because currently none of the places that would be able to
benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the
first place, but it makes it much more palatable to pass
CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it
eliminates some cases where we'd end up having to run the parallel
plan serially.
Patch by me, based on some ideas from Rafia Sabih and corrected by
Rafia Sabih based on feedback from Dilip Kumar and myself.
Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
Partitioned tables do not contain any data; only their unpartitioned
descendents need to be scanned. However, the partitioned tables still
need to be locked, even though they're not scanned. To make that
work, Append and MergeAppend relations now need to carry a list of
(unscanned) partitioned relations that must be locked, and InitPlan
must lock all partitioned result relations.
Aside from the obvious advantage of avoiding some work at execution
time, this has two other advantages. First, it may improve the
planner's decision-making in some cases since the empty relation
might throw things off. Second, it paves the way to getting rid of
the storage for partitioned tables altogether.
Amit Langote, reviewed by me.
Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
The index is scanned by a single process, but then all cooperating
processes can iterate jointly over the resulting set of heap blocks.
In the future, we might also want to support using a parallel bitmap
index scan to set up for a parallel bitmap heap scan, but that's a
job for another day.
Dilip Kumar, with some corrections and cosmetic changes by me. The
larger patch set of which this is a part has been reviewed and tested
by (at least) Andres Freund, Amit Khandekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, Thomas Munro, and me.
Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
With this change, you can see the query that a parallel worker is
executing in pg_stat_activity, and if the worker crashes you can
see what query it was executing when it crashed.
Rafia Sabih, reviewed by Kuntal Ghosh and Amit Kapila and slightly
revised by me.
Commit 5262f7a4fc44f651241d2ff1fa688dd664a34874 added similar support
for parallel index scans; this extends that work to index-only scans.
As with parallel index scans, this requires support from the index AM,
so currently parallel index-only scans will only be possible for btree
indexes.
Rafia Sabih, reviewed and tested by Rahila Syed, Tushar Ahuja,
and Amit Kapila
Discussion: http://postgr.es/m/CAOGQiiPEAs4C=TBp0XShxBvnWXuzGL2u++Hm1=qnCpd6_Mf8Fw@mail.gmail.com
In combination with 569174f1be92be93f5366212cc46960d28a5c5cd, which
taught the btree AM how to perform parallel index scans, this allows
parallel index scan plans on btree indexes. This infrastructure
should be general enough to support parallel index scans for other
index AMs as well, if someone updates them to support parallel
scans.
Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar
Ahuja, and Haribabu Kommi, and me.
This doesn't do anything to make Param nodes anything other than
parallel-restricted, so this only helps with uncorrelated subplans,
and it's not necessarily very cheap because each worker will run the
subplan separately (just as a Hash Join will build a separate copy of
the hash table in each participating process), but it's a first step
toward supporting cases that are more likely to help in practice, and
is occasionally useful on its own.
Amit Kapila, reviewed and tested by Rafia Sabih, Dilip Kumar, and
me.
Discussion: http://postgr.es/m/CAA4eK1+e8Z45D2n+rnDMDYsVEb5iW7jqaCH_tvPMYau=1Rru9w@mail.gmail.com
This patch makes several changes that improve the consistency of
representation of lists of statements. It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list. This patch brings
similar consistency to the outputs of raw parsing and planning steps:
* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.
* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements. In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node. This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.
Now, every list of statements has a consistent head-node type depending
on how far along it is in processing. This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.
Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way. It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)
Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list. While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.
The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement. This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)
There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.
Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes. This allows
more intelligent handling of cases where a source query string contains
multiple statements. This patch doesn't actually do anything with the
information, but a follow-on patch will. (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)
catversion bump because addition of location fields to struct Query
affects stored rules.
This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.
Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
With the old code, a backend that read pg_stat_activity without ever
having executed a parallel query might see a backend in the midst of
executing one waiting on a DSA LWLock, resulting in a crash. The
solution is for backends to register the tranche at startup time, not
the first time a parallel query is executed.
Report by Andreas Seltenreich. Patch by me, reviewed by Thomas Munro.
I got a little annoyed by reading documentation paragraphs containing
both spellings within a few lines of each other. My dictionary says
"descendant" is the preferred spelling, and it's certainly the majority
usage in our tree, so standardize on that.
For one usage in parallel.sgml, I thought it better to rewrite to avoid
the term altogether.
Commit af33039317ddc4a0e38a02e2255c2bf453115fd2 aimed to reduce
leakage from tqueue.c, which is good. Unfortunately, by changing the
memory context in which all of gather_readnext() executes, it also
changed the context in which ExecShutdownGatherWorkers executes, which
is not good, because that function eventually causes a call to
ExecParallelRetrieveInstrumentation, which proceeds to allocate
planstate->worker_instrument in a short-lived context, causing a
crash.
Rushabh Lathia, reviewed by Amit Kapila and by me.
We must not push down a foreign join when the foreign tables involved
should be accessed under different user mappings. Previously we tried
to enforce that rule literally during planning, but that meant that the
resulting plans were dependent on the current contents of the
pg_user_mapping catalog, and we had to blow away all cached plans
containing any remote join when anything at all changed in pg_user_mapping.
This could have been improved somewhat, but the fact that a syscache inval
callback has very limited info about what changed made it hard to do better
within that design. Instead, let's change the planner to not consider user
mappings per se, but to allow a foreign join if both RTEs have the same
checkAsUser value. If they do, then they necessarily will use the same
user mapping at runtime, and we don't need to know specifically which one
that is. Post-plan-time changes in pg_user_mapping no longer require any
plan invalidation.
This rule does give up some optimization ability, to wit where two foreign
table references come from views with different owners or one's from a view
and one's directly in the query, but nonetheless the same user mapping
would have applied. We'll sacrifice the first case, but to not regress
more than we have to in the second case, allow a foreign join involving
both zero and nonzero checkAsUser values if the nonzero one is the same as
the prevailing effective userID. In that case, mark the plan as only
runnable by that userID.
The plancache code already had a notion of plans being userID-specific,
in order to support RLS. It was a little confused though, in particular
lacking clarity of thought as to whether it was the rewritten query or just
the finished plan that's dependent on the userID. Rearrange that code so
that it's clearer what depends on which, and so that the same logic applies
to both RLS-injected role dependency and foreign-join-injected role
dependency.
Note that this patch doesn't remove the other issue mentioned in the
original complaint, which is that while we'll reliably stop using a foreign
join if it's disallowed in a new context, we might fail to start using a
foreign join if it's now allowed, but we previously created a generic
cached plan that didn't use one. It was agreed that the chance of winning
that way was not high enough to justify the much larger number of plan
invalidations that would have to occur if we tried to cause it to happen.
In passing, clean up randomly-varying spelling of EXPLAIN commands in
postgres_fdw.sql, and fix a COSTS ON example that had been allowed to
leak into the committed tests.
This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the
previous attempt at ensuring we wouldn't push down foreign joins that
span permissions contexts.
Etsuro Fujita and Tom Lane
Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
That way, if the result overflows size_t, you'll get an error instead
of undefined behavior, which seems like a plus. This also has the
effect of casting the number of workers from int to Size, which is
better because it's harder to overflow int than size_t.
Dilip Kumar reported this issue and provided a patch upon which this
patch is based, but his version did use mul_size.
These adjustments adjust code and comments in minor ways to prevent
pgindent from mangling them. Among other things, I tried to avoid
situations where pgindent would emit "a +b" instead of "a + b", and I
tried to avoid having it break up inline comments across multiple
lines.
In nodeFuncs.c, pgindent wants to introduce spurious indentation into
the definitions of planstate_tree_walker and planstate_walk_subplans.
Fix that by spreading the definition out across several lines, similar
to what is already done for other walker functions in that file.
In execParallel.c, in the definition of SharedExecutorInstrumentation,
pgindent wants to insert more whitespace between the type name and the
member name. That causes it to mangle comments later on the line. Fix
by moving the comments out of line. Now that we have a bit more room,
add some more details that may be useful to the next person reading
this code.
Originally, we didn't have nworkers_launched, so code that used parallel
contexts had to be preprared for the possibility that not all of the
workers requested actually got launched. But now we can count on knowing
the number of workers that were successfully launched, which can shave
off a few cycles and simplify some code slightly.
Amit Kapila, reviewed by Haribabu Kommi, per a suggestion from Peter
Geoghegan.
This patch doesn't put the new infrastructure to use anywhere, and
indeed it's not clear how it could ever be used for something like
postgres_fdw which has to send an SQL query and wait for a reply,
but there might be FDWs or custom scan providers that are CPU-bound,
so let's give them a way to join club parallel.
KaiGai Kohei, reviewed by me.
Previously, the foreign join pushdown infrastructure left the question
of security entirely up to individual FDWs, but it would be easy for
a foreign data wrapper to inadvertently open up subtle security holes
that way. So, make it the core code's job to determine which user
mapping OID is relevant, and don't attempt join pushdown unless it's
the same for all relevant relations.
Per a suggestion from Tom Lane. Shigeru Hanada and Ashutosh Bapat,
reviewed by Etsuro Fujita and KaiGai Kohei, with some further
changes by me.
The core innovation of this patch is the introduction of the concept
of a partial path; that is, a path which if executed in parallel will
generate a subset of the output rows in each process. Gathering a
partial path produces an ordinary (complete) path. This allows us to
generate paths for parallel joins by joining a partial path for one
side (which at the baserel level is currently always a Partial Seq
Scan) to an ordinary path on the other side. This is subject to
various restrictions at present, especially that this strategy seems
unlikely to be sensible for merge joins, so only nested loops and
hash joins paths are generated.
This also allows an Append node to be pushed below a Gather node in
the case of a partitioned table.
Testing revealed that early versions of this patch made poor decisions
in some cases, which turned out to be caused by the fact that the
original cost model for Parallel Seq Scan wasn't very good. So this
patch tries to make some modest improvements in that area.
There is much more to be done in the area of generating good parallel
plans in all cases, but this seems like a useful step forward.
Patch by me, reviewed by Dilip Kumar and Amit Kapila.
The original parallel sequential scan commit included only very limited
changes to the EXPLAIN output. Aggregated totals from all workers were
displayed, but there was no way to see what each individual worker did
or to distinguish the effort made by the workers from the effort made by
the leader.
Per a gripe by Thom Brown (and maybe others). Patch by me, reviewed
by Amit Kapila.