allocation in best_inner_indexscan(). While at it, simplify GEQO's
interface to the main planner --- make_join_rel() offers exactly the
API it really wants, whereas calling make_rels_by_clause_joins() and
make_rels_by_clauseless_joins() required jumping through hoops.
Rewrite gimme_tree for clarity (sometimes iteration is much better than
recursion), and approximately halve GEQO's runtime by recognizing that
tours of the forms (a,b,c,d,...) and (b,a,c,d,...) are equivalent
because of symmetry in make_join_rel().
in the planned representation of a subplan at all any more, only SubPlan.
This means subselect.c doesn't scribble on its input anymore, which seems
like a good thing; and there are no longer three different possible
interpretations of a SubLink. Simplify node naming and improve comments
in primnodes.h. No change to stored rules, though.
make VALUE a non-reserved word again, use less invasive method of passing
ConstraintTestValue into transformExpr, fix problems with nested constraint
testing, do correct thing with NULL result from a constraint expression,
remove memory leak. Domain checks still need much more work if we are going
to allow ALTER DOMAIN, however.
so that all executable expression nodes inherit from a common supertype
Expr. This is somewhat of an exercise in code purity rather than any
real functional advance, but getting rid of the extra Oper or Func node
formerly used in each operator or function call should provide at least
a little space and speed improvement.
initdb forced by changes in stored-rules representation.
('SELECT expression') inline, like macros, during the constant-folding
phase of planning. The actual expansion is not difficult, but checking
that we're not changing the semantics of the call turns out to be more
subtle than one might think; in particular must pay attention to
permissions issues, strictness, and volatility.
joinclauses is determined accurately for each join. Formerly, the code only
considered joinclauses that used all of the rels from the outer side of the
join; thus for example
FROM (a CROSS JOIN b) JOIN c ON (c.f1 = a.x AND c.f2 = b.y)
could not exploit a two-column index on c(f1,f2), since neither of the
qual clauses would be in the joininfo list it looked in. The new code does
this correctly, and also is able to eliminate redundant clauses, thus fixing
the problem noted 24-Oct-02 by Hans-Jürgen Schönig.
parameter to allow it to be forced off for comparison purposes.
Add ORDER BY clauses to a bunch of regression test queries that will
otherwise produce randomly-ordered output in the new regime.
of groups produced by GROUP BY. This improves the accuracy of planning
estimates for grouped subselects, and is needed to check whether a
hashed aggregation plan risks memory overflow.
node now does its own grouping of the input rows, and has no need for a
preceding GROUP node in the plan pipeline. This allows elimination of
the misnamed tuplePerGroup option for GROUP, and actually saves more code
in nodeGroup.c than it costs in nodeAgg.c, as well as being presumably
faster. Restructure the API of query_planner so that we do not commit to
using a sorted or unsorted plan in query_planner; instead grouping_planner
makes the decision. (Right now it isn't any smarter than query_planner
was, but that will change as soon as it has the option to select a hash-
based aggregation step.) Despite all the hackery, no initdb needed since
only in-memory node types changed.
that are explicitly JOINed are not considered dependencies unless they
are actually used in the query: mere presence in the joinaliasvars
list of a JOIN RTE doesn't count as being used. The patch touches
a number of files because I needed to generalize the API of
query_tree_walker to support an additional flag bit, but the changes
are otherwise quite small.
pg_language.lancompiler
pg_operator.oprprec
pg_operator.oprisleft
pg_proc.proimplicit
pg_proc.probyte_pct
pg_proc.properbyte_cpu
pg_proc.propercall_cpu
pg_proc.prooutin_ratio
pg_shadow.usetrace
pg_type.typprtlen
pg_type.typreceive
pg_type.typsend
Attempts to use the obsoleted attributes of pg_operator or pg_proc
in the CREATE commands will be greeted by a warning. For pg_type,
there is no warning (yet) because pg_dump scripts still contain these
attributes.
Also remove new but already obsolete spellings
isVolatile, isStable, isImmutable in WITH clause. (Use new syntax
instead.)
PX recombination operator, changes some elog() messages from LOG
to DEBUG1, puts some debugging functions inside the appropriate
#ifdef (not enabled by default), and makes a few other minor
cleanups.
BTW, the elog() change is motivated by at least one user who
has sent a concerned email to -general asking exactly what the
"ERX recombination operator" is, and what it is doing to their
DBMS.
Neil Conway
process function RTE expressions, which they were previously missing.
This allows outer-Var references and subselects to work correctly in
the arguments of a function RTE. Install check to prevent function RTEs
from cross-referencing Vars of sibling FROM-items, which doesn't make
any sense (if you want to join, write a JOIN or WHERE clause).
rather than a Query node; this allows set_plan_references to recurse
into subplans correctly. Fixes core dump on full outer joins in
subplans. Also, invoke preprocess_expression on function RTEs'
function expressions. This seems to fix the planner's problems with
outer-level Vars in function RTEs.
returns-set boolean field in Func and Oper nodes. This allows cleaner,
more reliable tests for expressions returning sets in the planner and
parser. For example, a WHERE clause returning a set is now detected
and complained of in the parser, not only at runtime.
some kibitzing from Tom Lane. Not everything works yet, and there's
no documentation or regression test, but let's commit this so Joe
doesn't need to cope with tracking changes in so many files ...
lists to join RTEs, attach a list of Vars and COALESCE expressions that will
replace the join's alias variables during planning. This simplifies
flatten_join_alias_vars while still making it easy to fix up varno references
when transforming the query tree. Add regression test cases for interactions
of subqueries with outer joins.
volatile), rather than the old cachable/noncachable distinction. This
allows indexscan optimizations in many places where we formerly didn't.
Also, add a pronamespace column to pg_proc (it doesn't do anything yet,
however).
now has an RTE of its own, and references to its outputs now are Vars
referencing the JOIN RTE, rather than CASE-expressions. This allows
reverse-listing in ruleutils.c to use the correct alias easily, rather
than painfully reverse-engineering the alias namespace as it used to do.
Also, nested FULL JOINs work correctly, because the result of the inner
joins are simple Vars that the planner can cope with. This fixes a bug
reported a couple times now, notably by Tatsuo on 18-Nov-01. The alias
Vars are expanded into COALESCE expressions where needed at the very end
of planning, rather than during parsing.
Also, beginnings of support for showing plan qualifier expressions in
EXPLAIN. There are probably still cases that need work.
initdb forced due to change of stored-rule representation.
set-returning functions in its target list. This ensures that we
won't rewrite the query in a way that places set-returning functions
into quals (WHERE clauses). Cf. bug reports from Joe Conway.
from Philip Warner. Side effect of change is that GROUP BY expressions
will not be re-evaluated at multiple plan levels anymore, whereas this
sometimes happened with old code.
clause being added to a particular restriction-clause list is redundant
with those already in the list. This avoids useless work at runtime,
and (perhaps more importantly) keeps the selectivity estimation routines
from generating too-small estimates of numbers of output rows.
Also some minor improvements in OPTIMIZER_DEBUG displays.
pgsql-hackers. pg_opclass now has a row for each opclass supported by each
index AM, not a row for each opclass name. This allows pg_opclass to show
directly whether an AM supports an opclass, and furthermore makes it possible
to store additional information about an opclass that might be AM-dependent.
pg_opclass and pg_amop now store "lossy" and "haskeytype" information that we
previously expected the user to remember to provide in CREATE INDEX commands.
Lossiness is no longer an index-level property, but is associated with the
use of a particular operator in a particular index opclass.
Along the way, IndexSupportInitialize now uses the syscaches to retrieve
pg_amop and pg_amproc entries. I find this reduces backend launch time by
about ten percent, at the cost of a couple more special cases in catcache.c's
IndexScanOK.
Initial work by Oleg Bartunov and Teodor Sigaev, further hacking by Tom Lane.
initdb forced.
has a DISTINCT ON clause, per bug report from Anthony Wood. While at it,
improve the DISTINCT-ON-clause recognizer routine to not be fooled by out-
of-order DISTINCT lists.
WHERE (a = 1 or a = 2) and b = 42
and an index on (a,b), include the clause b = 42 in the indexquals
generated for each arm of the OR clause. Essentially this is an index-
driven conversion from CNF to DNF. Implementation is a bit klugy, but
better than not exploiting the extra quals at all ...
of costsize.c routines to pass Query root, so that costsize can figure
more things out by itself and not be so dependent on its callers to tell
it everything it needs to know. Use selectivity of hash or merge clause
to estimate number of tuples processed internally in these joins
(this is more useful than it would've been before, since eqjoinsel is
somewhat more accurate than before).
create_index_paths are not immediately discarded, but are available for
subsequent planner work. This allows avoiding redundant syscache lookups
in several places. Change interface to operator selectivity estimation
procedures to allow faster and more flexible estimation.
Initdb forced due to change of pg_proc entries for selectivity functions!
a separate statement (though it can still be invoked as part of VACUUM, too).
pg_statistic redesigned to be more flexible about what statistics are
stored. ANALYZE now collects a list of several of the most common values,
not just one, plus a histogram (not just the min and max values). Random
sampling is used to make the process reasonably fast even on very large
tables. The number of values and histogram bins collected is now
user-settable via an ALTER TABLE command.
There is more still to do; the new stats are not being used everywhere
they could be in the planner. But the remaining changes for this project
should be localized, and the behavior is already better than before.
A not-very-related change is that sorting now makes use of btree comparison
routines if it can find one, rather than invoking '<' twice.
as both a GROUP BY item and an output expression, the top-level Group
node should just copy up the evaluated expression value from its input,
rather than re-evaluating the expression. Aside from any performance
benefit this might offer, this avoids a crash when there is a sub-SELECT
in said expression.
comparison does not consider paths different when they differ only in
uninteresting aspects of sort order. (We had a special case of this
consideration for indexscans already, but generalize it to apply to
ordered join paths too.) Be stricter about what is a canonical pathkey
to allow faster pathkey comparison. Cache canonical pathkeys and
dispersion stats for left and right sides of a RestrictInfo's clause,
to avoid repeated computation. Total speedup will depend on number of
tables in a query, but I see about 4x speedup of planning phase for
a sample seven-table query.
joins, and clean things up a good deal at the same time. Append plan node
no longer hacks on rangetable at runtime --- instead, all child tables are
given their own RT entries during planning. Concept of multiple target
tables pushed up into execMain, replacing bug-prone implementation within
nodeAppend. Planner now supports generating Append plans for inheritance
sets either at the top of the plan (the old way) or at the bottom. Expanding
at the bottom is appropriate for tables used as sources, since they may
appear inside an outer join; but we must still expand at the top when the
target of an UPDATE or DELETE is an inheritance set, because we actually need
a different targetlist and junkfilter for each target table in that case.
Fortunately a target table can't be inside an outer join... Bizarre mutual
recursion between union_planner and prepunion.c is gone --- in fact,
union_planner doesn't really have much to do with union queries anymore,
so I renamed it grouping_planner.
ExecutorRun. This allows LIMIT to work in a view. Also, LIMIT in a
cursor declaration will behave in a reasonable fashion, whereas before
it was overridden by the FETCH count.