1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-05 07:21:24 +03:00
Commit Graph

1494 Commits

Author SHA1 Message Date
d3237e04ca Fix SELECT DISTINCT with index-optimized MIN/MAX on inheritance trees.
In a query such as "SELECT DISTINCT min(x) FROM tab", the DISTINCT is
pretty useless (there being only one output row), but nonetheless it
shouldn't fail.  But it could fail if "tab" is an inheritance parent,
because planagg.c's code for fixing up equivalence classes after making the
index-optimized MIN/MAX transformation wasn't prepared to find child-table
versions of the aggregate expression.  The least ugly fix seems to be
to add an option to mutate_eclass_expressions() to skip child-table
equivalence class members, which aren't used anymore at this stage of
planning so it's not really necessary to fix them.  Since child members
are ignored in many cases already, it seems plausible for
mutate_eclass_expressions() to have an option to ignore them too.

Per bug #7703 from Maxim Boguk.

Back-patch to 9.1.  Although the same code exists before that, it cannot
encounter child-table aggregates AFAICS, because the index optimization
transformation cannot succeed on inheritance trees before 9.1 (for lack
of MergeAppend).
2012-11-26 12:57:58 -05:00
1746ba9256 Improve check_partial_indexes() to consider join clauses in proof attempts.
Traditionally check_partial_indexes() has only looked at restriction
clauses while trying to prove partial indexes usable in queries.  However,
join clauses can also be used in some cases; mainly, that a strict operator
on "x" proves an "x IS NOT NULL" index predicate, even if the operator is
in a join clause rather than a restriction clause.  Adding this code fixes
a regression in 9.2, because previously we would take join clauses into
account when considering whether a partial index could be used in a
nestloop inner indexscan path.  9.2 doesn't handle nestloop inner
indexscans in the same way, and this consideration was overlooked in the
rewrite.  Moving the work to check_partial_indexes() is a better solution
anyway, since the proof applies whether or not we actually use the index
in that particular way, and we don't have to do it over again for each
possible outer relation.  Per report from Dave Cramer.
2012-11-15 19:29:05 -05:00
dcc55dd21a Rename ResolveNew() to ReplaceVarsFromTargetList(), and tweak its API.
This function currently lacks the option to throw error if the provided
targetlist doesn't have any matching entry for a Var to be replaced.
Two of the four existing call sites would be better off with an error,
as would the usage in the pending auto-updatable-views patch, so it seems
past time to extend the API to support that.  To do so, replace the "event"
parameter (historically of type CmdType, though it was declared plain int)
with a special-purpose enum type.

It's unclear whether this function might be called by third-party code.
Since many C compilers wouldn't warn about a call site continuing to use
the old calling convention, rename the function to forcibly break any
such code that hasn't been updated.  The old name was none too well chosen
anyhow.
2012-11-08 16:52:49 -05:00
19e36477b3 Limit the number of rel sets considered in consider_index_join_outer_rels.
In bug #7626, Brian Dunavant exposes a performance problem created by
commit 3b8968f252: that commit attempted to
consider *all* possible combinations of indexable join clauses, but if said
clauses join to enough different relations, there's an exponential increase
in the number of outer-relation sets considered.

In Brian's example, all the clauses come from the same equivalence class,
which means it's redundant to use more than one of them in an indexscan
anyway.  So we can prevent the problem in this class of cases (which is
probably the majority of real examples) by rejecting combinations that
would only serve to add a known-redundant clause.

But that still leaves us exposed to exponential growth of planning time
when the query has a lot of non-equivalence join clauses that are usable
with the same index.  I chose to prevent such cases by setting an upper
limit on the number of relation sets considered, equal to ten times the
number of index clauses considered so far.  (This sliding limit still
allows new relsets to be added on as we move to additional index columns,
which is probably more important than considering even more combinations of
clauses for the previous column.)  This should keep the amount of work done
roughly linear rather than exponential in the apparent query complexity.
This part of the fix is pretty ad-hoc; but without a clearer idea of
real-world cases for which this would result in markedly inferior plans,
it's hard to see how to do better.
2012-11-01 14:08:42 -04:00
17804fa71b Prefer actual constants to pseudo-constants in equivalence class machinery.
generate_base_implied_equalities_const() should prefer plain Consts over
other em_is_const eclass members when choosing the "pivot" value that
all the other members will be equated to.  This makes it more likely that
the generated equalities will be useful in constraint-exclusion proofs.
Per report from Rushabh Lathia.
2012-10-26 14:19:34 -04:00
72a4231f0c Fix planning of non-strict equivalence clauses above outer joins.
If a potential equivalence clause references a variable from the nullable
side of an outer join, the planner needs to take care that derived clauses
are not pushed to below the outer join; else they may use the wrong value
for the variable.  (The problem arises only with non-strict clauses, since
if an upper clause can be proven strict then the outer join will get
simplified to a plain join.)  The planner attempted to prevent this type
of error by checking that potential equivalence clauses aren't
outerjoin-delayed as a whole, but actually we have to check each side
separately, since the two sides of the clause will get moved around
separately if it's treated as an equivalence.  Bugs of this type can be
demonstrated as far back as 7.4, even though releases before 8.3 had only
a very ad-hoc notion of equivalence clauses.

In addition, we neglected to account for the possibility that such clauses
might have nonempty nullable_relids even when not outerjoin-delayed; so the
equivalence-class machinery lacked logic to compute correct nullable_relids
values for clauses it constructs.  This oversight was harmless before 9.2
because we were only using RestrictInfo.nullable_relids for OR clauses;
but as of 9.2 it could result in pushing constructed equivalence clauses
to incorrect places.  (This accounts for bug #7604 from Bill MacArthur.)

Fix the first problem by adding a new test check_equivalence_delay() in
distribute_qual_to_rels, and fix the second one by adding code in
equivclass.c and called functions to set correct nullable_relids for
generated clauses.  Although I believe the second part of this is not
currently necessary before 9.2, I chose to back-patch it anyway, partly to
keep the logic similar across branches and partly because it seems possible
we might find other reasons why we need valid values of nullable_relids in
the older branches.

Add regression tests illustrating these problems.  In 9.0 and up, also
add test cases checking that we can push constants through outer joins,
since we've broken that optimization before and I nearly broke it again
with an overly simplistic patch for this problem.
2012-10-18 12:30:10 -04:00
a29f7ed554 Get rid of COERCE_DONTCARE.
We don't need this hack any more.
2012-10-12 13:35:00 -04:00
71e58dcfb9 Make equal() ignore CoercionForm fields for better planning with casts.
This change ensures that the planner will see implicit and explicit casts
as equivalent for all purposes, except in the minority of cases where
there's actually a semantic difference (as reflected by having a 3-argument
cast function).  In particular, this fixes cases where the EquivalenceClass
machinery failed to consider two references to a varchar column as
equivalent if one was implicitly cast to text but the other was explicitly
cast to text, as seen in bug #7598 from Vaclav Juza.  We have had similar
bugs before in other parts of the planner, so I think it's time to fix this
problem at the core instead of continuing to band-aid around it.

Remove set_coercionform_dontcare(), which represents the band-aid
previously in use for allowing matching of index and constraint expressions
with inconsistent cast labeling.  (We can probably get rid of
COERCE_DONTCARE altogether, but I don't think removing that enum value in
back branches would be wise; it's possible there's third party code
referring to it.)

Back-patch to 9.2.  We could go back further, and might want to once this
has been tested more; but for the moment I won't risk destabilizing plan
choices in long-since-stable branches.
2012-10-12 12:11:22 -04:00
ea72bb8ae5 Fix typo in previous MSC commit. 2012-10-07 19:56:26 -04:00
33a7101281 Quiet a few MSC compiler warnings. 2012-10-07 17:31:10 -04:00
807a40c551 Fix planning of btree index scans using ScalarArrayOpExpr quals.
In commit 9e8da0f757, I improved btree
to handle ScalarArrayOpExpr quals natively, so that constructs like
"indexedcol IN (list)" could be supported by index-only scans.  Using
such a qual results in multiple scans of the index, under-the-hood.
I went to some lengths to ensure that this still produces rows in index
order ... but I failed to recognize that if a higher-order index column
is lacking an equality constraint, rescans can produce out-of-order
data from that column.  Tweak the planner to not expect sorted output
in that case.  Per trouble report from Robert McGehee.
2012-09-18 12:20:34 -04:00
3b8968f252 Rethink heuristics for choosing index quals for parameterized paths.
Some experimentation with examples similar to bug #7539 has convinced me
that indxpath.c's original implementation of parameterized-path generation
was several bricks shy of a load.  In general, if we are relying on a
particular outer rel or set of outer rels for a parameterized path, the
path should use every indexable join clause that's available from that rel
or rels.  Any join clauses that get left out of the indexqual will end up
getting applied as plain filter quals (qpquals), and that's generally a
significant loser compared to having the index AM enforce them.  (This is
particularly true with btree, which can skip the index scan entirely if
it can see that the given indexquals are mutually contradictory.)  The
original heuristics failed to ensure this, though, and were overly
complicated anyway.  Rewrite to make the code explicitly identify each
useful set of outer rels and then select all applicable join clauses for
each one.  The one plan that changes in the regression tests is in fact
for the better according to the planner's cost estimates.

(Note: this is not a correctness issue but just a matter of plan quality.
I don't yet know what is going on in bug #7539, but I don't expect this
change to fix that.)
2012-09-16 17:58:09 -04:00
a20993608a Fix case of window function + aggregate + GROUP BY expression.
In commit 1bc16a9460 I added a minor
optimization to drop the component variables of a GROUP BY expression from
the target list computed at the aggregation level of a query, if those Vars
weren't referenced elsewhere in the tlist.  However, I overlooked that the
window-function planning code would deconstruct such expressions and thus
need to have access to their component variables.  Fix it to not do that.

While at it, I removed the distinction between volatile and nonvolatile
window partition/order expressions: the code now computes all of them
at the aggregation level.  This saves a relatively expensive check for
volatility, and it's unclear that the resulting plan isn't better anyway.

Per bug #7535 from Louis-David Mitterrand.  Back-patch to 9.2.
2012-09-13 11:32:25 -04:00
46c508fbcf Fix PARAM_EXEC assignment mechanism to be safe in the presence of WITH.
The planner previously assumed that parameter Vars having the same absolute
query level, varno, and varattno could safely be assigned the same runtime
PARAM_EXEC slot, even though they might be different Vars appearing in
different subqueries.  This was (probably) safe before the introduction of
CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can
be executed during execution of some other subquery, causing the lifespan
of Params at the same syntactic nesting level as the CTE to overlap with
use of the same slots inside the CTE.  In 9.1 we created additional hazards
by using the same parameter-assignment technology for nestloop inner scan
parameters, but it was broken before that, as illustrated by the added
regression test.

To fix, restructure the planner's management of PlannerParamItems so that
items having different semantic lifespans are kept rigorously separated.
This will probably result in complex queries using more runtime PARAM_EXEC
slots than before, but the slots are cheap enough that this hardly matters.
Also, stop generating PlannerParamItems containing Params for subquery
outputs: all we really need to do is reserve the PARAM_EXEC slot number,
and that now only takes incrementing a counter.  The planning code is
simpler and probably faster than before, as well as being more correct.

Per report from Vik Reykja.

These changes will mostly also need to be made in the back branches, but
I'm going to hold off on that until after 9.2.0 wraps.
2012-09-05 12:55:01 -04:00
6d2c8c0e2a Drop cheap-startup-cost paths during add_path() if we don't need them.
We can detect whether the planner top level is going to care at all about
cheap startup cost (it will only do so if query_planner's tuple_fraction
argument is greater than zero).  If it isn't, we might as well discard
paths immediately whose only advantage over others is cheap startup cost.
This turns out to get rid of quite a lot of paths in complex queries ---
I saw planner runtime reduction of more than a third on one large query.

Since add_path isn't currently passed the PlannerInfo "root", the easiest
way to tell it whether to do this was to add a bool flag to RelOptInfo.
That's a bit redundant, since all relations in a given query level will
have the same setting.  But in the future it's possible that we'd refine
the control decision to work on a per-relation basis, so this seems like
a good arrangement anyway.

Per my suggestion of a few months ago.
2012-09-01 18:16:24 -04:00
4da6439bd8 Fix mark_placeholder_maybe_needed to handle LATERAL references.
If a PlaceHolderVar contains a pulled-up LATERAL reference, its minimum
possible evaluation level might be higher in the join tree than its
original syntactic location.  That in turn affects the ph_needed level for
any contained PlaceHolderVars (that is, those PHVs had better propagate up
the join tree at least to the evaluation level of the outer PHV).  We got
this mostly right, but mark_placeholder_maybe_needed() failed to account
for the effect, and in consequence could leave the inner PHVs with
ph_may_need less than what their ultimate ph_needed value will be.  That's
bad because it could lead to failure to select a join order that will allow
evaluation of the inner PHV at a valid location.  Fix that, and add an
Assert that checks that we don't ever set ph_needed to more than
ph_may_need.
2012-09-01 13:56:46 -04:00
c97a547a4a Partially restore qual scope checks in distribute_qual_to_rels().
The LATERAL implementation is now basically complete, and I still don't
see a cost-effective way to make an exact qual scope cross-check in the
presence of LATERAL.  However, I did add a PlannerInfo.hasLateralRTEs flag
along the way, so it's easy to make the check only when not hasLateralRTEs.
That seems to still be useful, and it beats having no check at all.
2012-08-31 18:57:12 -04:00
da3df99870 Fix LATERAL references to join alias variables.
I had thought this case worked already, but perhaps I didn't re-test it
after adding extract_lateral_references() ...
2012-08-31 17:44:31 -04:00
c219d9b0a5 Split tuple struct defs from htup.h to htup_details.h
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.

I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h.  In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
2012-08-30 16:52:35 -04:00
77387f0ac8 Suppress creation of backwardly-indexed paths for LATERAL join clauses.
Given a query such as

SELECT * FROM foo JOIN LATERAL (SELECT foo.var1) ss(x) ON ss.x = foo.var2

the existence of the join clause "ss.x = foo.var2" encourages indxpath.c to
build a parameterized path for foo using any index available for foo.var2.
This is completely useless activity, though, since foo has got to be on the
outside not the inside of any nestloop join with ss.  It's reasonably
inexpensive to add tests that prevent creation of such paths, so let's do
that.
2012-08-30 14:33:00 -04:00
e83bb10d6d Adjust definition of cheapest_total_path to work better with LATERAL.
In the initial cut at LATERAL, I kept the rule that cheapest_total_path
was always unparameterized, which meant it had to be NULL if the relation
has no unparameterized paths.  It turns out to work much more nicely if
we always have *some* path nominated as cheapest-total for each relation.
In particular, let's still say it's the cheapest unparameterized path if
there is one; if not, take the cheapest-total-cost path among those of
the minimum available parameterization.  (The first rule is actually
a special case of the second.)

This allows reversion of some temporary lobotomizations I'd put in place.
In particular, the planner can now consider hash and merge joins for
joins below a parameter-supplying nestloop, even if there aren't any
unparameterized paths available.  This should bring planning of
LATERAL-containing queries to the same level as queries not using that
feature.

Along the way, simplify management of parameterized paths in add_path()
and friends.  In the original coding for parameterized paths in 9.2,
I tried to minimize the logic changes in add_path(), so it just treated
parameterization as yet another dimension of comparison for paths.
We later made it ignore pathkeys (sort ordering) of parameterized paths,
on the grounds that ordering isn't a useful property for the path on the
inside of a nestloop, so we might as well get rid of useless parameterized
paths as quickly as possible.  But we didn't take that reasoning as far as
we should have.  Startup cost isn't a useful property inside a nestloop
either, so add_path() ought to discount startup cost of parameterized paths
as well.  Having done that, the secondary sorting I'd implemented (in
add_parameterized_path) is no longer needed --- any parameterized path that
survives add_path() at all is worth considering at higher levels.  So this
should be a bit faster as well as simpler.
2012-08-29 22:06:07 -04:00
21c09e99dc Split heapam_xlog.h from heapam.h
The heapam XLog functions are used by other modules, not all of which
are interested in the rest of the heapam API.  With this, we let them
get just the XLog stuff in which they are interested and not pollute
them with unrelated includes.

Also, since heapam.h no longer requires xlog.h, many files that do
include heapam.h no longer get xlog.h automatically, including a few
headers.  This is useful because heapam.h is getting pulled in by
execnodes.h, which is in turn included by a lot of files.
2012-08-28 19:02:00 -04:00
9ff79b9d4e Fix up planner infrastructure to support LATERAL properly.
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries.  Notable changes:

* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.)  Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.

* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization.  We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.

* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.

* Assorted corner-case bug fixes.

There's probably still some bugs left, but this is a lot closer to being
real than it was before.
2012-08-26 22:50:23 -04:00
a91f885f11 Remove obsolete comment. 2012-08-19 15:25:43 -04:00
092d7ded29 Allow OLD and NEW in multi-row VALUES within rules.
Now that we have LATERAL, it's fairly painless to allow this case, which
was left as a TODO in the original multi-row VALUES implementation.
2012-08-19 14:12:16 -04:00
084a29c94f Another round of planner fixes for LATERAL.
Formerly, subquery pullup had no need to examine other entries in the range
table, since they could not contain any references to the subquery being
pulled up.  That's no longer true with LATERAL, so now we need to be able
to visit rangetable subexpressions to replace Vars referencing the
pulled-up subquery.  Also, this means that extract_lateral_references must
be unsurprised at encountering lateral PlaceHolderVars, since such might be
created when pulling up a subquery that's underneath an outer join with
respect to the lateral reference.
2012-08-18 14:10:17 -04:00
f5983923d8 Allow create_index_paths() to consider multiple join bitmapscan paths.
In the initial cut at the "parameterized paths" feature, I'd simplified
create_index_paths() to the point where it would only generate a single
parameterized bitmap path per relation.  Experimentation with an example
supplied by Josh Berkus convinces me that that's not good enough: we really
need to consider a bitmap path for each possible outer relation.  Otherwise
we have regressions relative to pre-9.2 versions, in which the planner
picks a plain indexscan where it should have used a bitmap scan in queries
involving three or more tables.  Indeed, after fixing this, several queries
in the regression tests show improved plans as a result of using bitmap not
plain indexscans.
2012-08-16 13:03:54 -04:00
eb919e8fde Resurrect the "last ditch" code path in join_search_one_level().
This essentially reverts commit e54b10a62d,
in which I'd decided that the "last ditch" join logic was useless.  The
folly of that is now exposed by a report from Pavel Stehule: although the
function should always find at least one join in a self-contained join
problem, it can still fail to do so in a sub-problem created by artificial
from_collapse_limit or join_collapse_limit constraints.  Adjust the
comments to describe this, and simplify the code a bit to match the new
coding of the earlier loop in the function.

I'm not terribly happy about this: I still subscribe to the opinion stated
in the previous commit message that the "last ditch" code can obscure logic
bugs elsewhere.  But the alternative seems to be to complicate the earlier
tests for does-this-relation-have-a-join-clause to the point where they can
tell whether the join clauses link outside the current join sub-problem.
And that looks messy, slow, and possibly a source of bugs in itself.
In any case, now is not the time to be inserting experimental code into
9.2, so let's just go back to the time-tested solution.
2012-08-15 00:08:13 -04:00
c1774d2c81 More fixes for planner's handling of LATERAL.
Re-allow subquery pullup for LATERAL subqueries, except when the subquery
is below an outer join and contains lateral references to relations outside
that outer join.  If we pull up in such a case, we risk introducing lateral
cross-references into outer joins' ON quals, which is something the code is
entirely unprepared to cope with right now; and I'm not sure it'll ever be
worth coping with.

Support lateral refs in VALUES (this seems to be the only additional path
type that needs such support as a consequence of re-allowing subquery
pullup).

Put in a slightly hacky fix for joinpath.c's refusal to consider
parameterized join paths even when there cannot be any unparameterized
ones.  This was causing "could not devise a query plan for the given query"
failures in queries involving more than two FROM items.

Put in an even more hacky fix for distribute_qual_to_rels() being unhappy
with join quals that contain references to rels outside their syntactic
scope; which is to say, disable that test altogether.  Need to think about
how to preserve some sort of debugging cross-check here, while not
expending more cycles than befits a debugging cross-check.
2012-08-12 16:01:26 -04:00
e76af54137 Fix some issues with LATERAL(SELECT UNION ALL SELECT).
The LATERAL marking has to be propagated down to the UNION leaf queries
when we pull them up.  Also, fix the formerly stubbed-off
set_append_rel_pathlist().  It does already have enough smarts to cope with
making a parameterized Append path at need; it just has to not assume that
there *must* be an unparameterized path.
2012-08-11 18:42:56 -04:00
eaccfded98 Centralize the logic for detecting misplaced aggregates, window funcs, etc.
Formerly we relied on checking after-the-fact to see if an expression
contained aggregates, window functions, or sub-selects when it shouldn't.
This is grotty, easily forgotten (indeed, we had forgotten to teach
DefineIndex about rejecting window functions), and none too efficient
since it requires extra traversals of the parse tree.  To improve matters,
define an enum type that classifies all SQL sub-expressions, store it in
ParseState to show what kind of expression we are currently parsing, and
make transformAggregateCall, transformWindowFuncCall, and transformSubLink
check the expression type and throw error if the type indicates the
construct is disallowed.  This allows removal of a large number of ad-hoc
checks scattered around the code base.  The enum type is sufficiently
fine-grained that we can still produce error messages of at least the
same specificity as before.

Bringing these error checks together revealed that we'd been none too
consistent about phrasing of the error messages, so standardize the wording
a bit.

Also, rewrite checking of aggregate arguments so that it requires only one
traversal of the arguments, rather than up to three as before.

In passing, clean up some more comments left over from add_missing_from
support, and annotate some tests that I think are dead code now that that's
gone.  (I didn't risk actually removing said dead code, though.)
2012-08-10 11:36:15 -04:00
5ebaaa4944 Implement SQL-standard LATERAL subqueries.
This patch implements the standard syntax of LATERAL attached to a
sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM,
since set-returning function calls are expected to be one of the principal
use-cases.

The main change here is a rewrite of the mechanism for keeping track of
which relations are visible for column references while the FROM clause is
being scanned.  The parser "namespace" lists are no longer lists of bare
RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE
pointer as well as some visibility-controlling flags.  Aside from
supporting LATERAL correctly, this lets us get rid of the ancient hacks
that required rechecking subqueries and JOIN/ON and function-in-FROM
expressions for invalid references after they were initially parsed.
Invalid column references are now always correctly detected on sight.

In passing, remove assorted parser error checks that are now dead code by
virtue of our having gotten rid of add_missing_from, as well as some
comments that are obsolete for the same reason.  (It was mainly
add_missing_from that caused so much fudging here in the first place.)

The planner support for this feature is very minimal, and will be improved
in future patches.  It works well enough for testing purposes, though.

catversion bump forced due to new field in RangeTblEntry.
2012-08-07 19:02:54 -04:00
31c7c642b6 Account for SRFs in targetlists in planner rowcount estimates.
We made use of the ROWS estimate for set-returning functions used in FROM,
but not for those used in SELECT targetlists; which is a bit of an
oversight considering there are common usages that require the latter
approach.  Improve that.  (I had initially thought it might be worth
folding this into cost_qual_eval, but after investigation concluded that
that wouldn't be very helpful, so just do it separately.)  Per complaint
from David Johnston.

Back-patch to 9.2, but not further, for fear of destabilizing plan choices
in existing releases.
2012-07-21 17:45:07 -04:00
00dac6000d Refactor pattern_fixed_prefix() to avoid dealing in incomplete patterns.
Previously, pattern_fixed_prefix() was defined to return whatever fixed
prefix it could extract from the pattern, plus the "rest" of the pattern.
That definition was sensible for LIKE patterns, but not so much for
regexes, where reconstituting a valid pattern minus the prefix could be
quite tricky (certainly the existing code wasn't doing that correctly).
Since the only thing that callers ever did with the "rest" of the pattern
was to pass it to like_selectivity() or regex_selectivity(), let's cut out
the middle-man and just have pattern_fixed_prefix's subroutines do this
directly.  Then pattern_fixed_prefix can return a simple selectivity
number, and the question of how to cope with partial patterns is removed
from its API specification.

While at it, adjust the API spec so that callers who don't actually care
about the pattern's selectivity (which is a lot of them) can pass NULL for
the selectivity pointer to skip doing the work of computing a selectivity
estimate.

This patch is only an API refactoring that doesn't actually change any
processing, other than allowing a little bit of useless work to be skipped.
However, it's necessary infrastructure for my upcoming fix to regex prefix
extraction, because after that change there won't be any simple way to
identify the "rest" of the regex, not even to the low level of fidelity
needed by regex_selectivity.  We can cope with that if regex_fixed_prefix
and regex_selectivity communicate directly, but not if we have to work
within the old API.  Hence, back-patch to all active branches.
2012-07-09 23:22:55 -04:00
e7ef6d7e24 Fix planner to pass correct collation to operator selectivity estimators.
We can do this without creating an API break for estimation functions
by passing the collation using the existing fmgr functionality for
passing an input collation as a hidden parameter.

The need for this was foreseen at the outset, but we didn't get around to
making it happen in 9.1 because of the decision to sort all pg_statistic
histograms according to the database's default collation.  That meant that
selectivity estimators generally need to use the default collation too,
even if they're estimating for an operator that will do something
different.  The reason it's suddenly become more interesting is that
regexp interpretation also uses a collation (for its LC_TYPE not LC_COLLATE
property), and we no longer want to use the wrong collation when examining
regexps during planning.  It's not that the selectivity estimate is likely
to change much from this; rather that we are thinking of caching compiled
regexps during planner estimation, and we won't get the intended benefit
if we cache them with a different collation than the executor will use.

Back-patch to 9.1, both because the regexp change is likely to get
back-patched and because we might as well get this right in all
collation-supporting branches, in case any third-party code wants to
rely on getting the collation.  The patch turns out to be minuscule
now that I've done it ...
2012-07-08 23:51:08 -04:00
bde689f809 Make UtilityContainsQuery recurse until it finds a non-utility Query.
The callers of UtilityContainsQuery want it to return a non-utility Query
if it returns anything at all.  However, since we made CREATE TABLE
AS/SELECT INTO into a utility command instead of a variant of SELECT,
a command like "EXPLAIN SELECT INTO" results in two nested utility
statements.  So what we need UtilityContainsQuery to do is drill down
to the bottom non-utility Query.

I had thought of this possibility in setrefs.c, and fixed it there by
looping around the UtilityContainsQuery call; but overlooked that the call
sites in plancache.c have a similar issue.  In those cases it's
notationally inconvenient to provide an external loop, so let's redefine
UtilityContainsQuery as recursing down to a non-utility Query instead.

Noted by Rushabh Lathia.  This is a somewhat cleaned-up version of his
proposed patch.
2012-06-27 23:18:30 -04:00
b8b2e3b2de Replace int2/int4 in C code with int16/int32
The latter was already the dominant use, and it's preferable because
in C the convention is that intXX means XX bits.  Therefore, allowing
mixed use of int2, int4, int8, int16, int32 is obviously confusing.

Remove the typedefs for int2 and int4 for now.  They don't seem to be
widely used outside of the PostgreSQL source tree, and the few uses
can probably be cleaned up by the time this ships.
2012-06-25 01:51:46 +03:00
927d61eeff Run pgindent on 9.2 source tree in preparation for first 9.3
commit-fest.
2012-06-10 15:20:04 -04:00
7c85aa39fc Fix oversight in recent parameterized-path patch.
bitmap_scan_cost_est() has to be able to cope with a BitmapOrPath, but
I'd taken a shortcut that didn't work for that case.  Noted by Heikki.
Add some regression tests since this area is evidently under-covered.
2012-04-26 14:17:44 -04:00
9fa82c9809 Fix planner's handling of RETURNING lists in writable CTEs.
setrefs.c failed to do "rtoffset" adjustment of Vars in RETURNING lists,
which meant they were left with the wrong varnos when the RETURNING list
was in a subquery.  That was never possible before writable CTEs, of
course, but now it's broken.  The executor fails to notice any problem
because ExecEvalVar just references the ecxt_scantuple for any normal
varno; but EXPLAIN breaks when the varno is wrong, as illustrated in a
recent complaint from Bartosz Dmytrak.

Since the eventual rtoffset of the subquery is not known at the time
we are preparing its plan node, the previous scheme of executing
set_returning_clause_references() at that time cannot handle this
adjustment.  Fortunately, it turns out that we don't really need to do it
that way, because all the needed information is available during normal
setrefs.c execution; we just have to dig it out of the ModifyTable node.
So, do that, and get rid of the kluge of early setrefs processing of
RETURNING lists.  (This is a little bit of a cheat in the case of inherited
UPDATE/DELETE, because we are not passing a "root" struct that corresponds
exactly to what the subplan was built with.  But that doesn't matter, and
anyway this is less ugly than early setrefs processing was.)

Back-patch to 9.1, where the problem became possible to hit.
2012-04-25 20:20:33 -04:00
33e99153e9 Use fuzzy not exact cost comparison for the final tie-breaker in add_path.
Instead of an exact cost comparison, use a fuzzy comparison with 1e-10
delta after all other path metrics have proved equal.  This is to avoid
having platform-specific roundoff behaviors determine the choice when
two paths are really the same to our cost estimators.  Adjust the
recently-added test case that made it obvious we had a problem here.
2012-04-21 00:51:14 -04:00
1f03630011 Adjust join_search_one_level's handling of clauseless joins.
For an initial relation that lacks any join clauses (that is, it has to be
cartesian-product-joined to the rest of the query), we considered only
cartesian joins with initial rels appearing later in the initial-relations
list.  This creates an undesirable dependency on FROM-list order.  We would
never fail to find a plan, but perhaps we might not find the best available
plan.  Noted while discussing the logic with Amit Kapila.

Improve the comments a bit in this area, too.

Arguably this is a bug fix, but given the lack of complaints from the
field I'll refrain from back-patching.
2012-04-20 20:10:46 -04:00
5b7b5518d0 Revise parameterized-path mechanism to fix assorted issues.
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate.  We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.

In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage.  This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.

To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing.  This is required at both base scans and joins.  It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree.  Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
2012-04-19 15:53:47 -04:00
e54b10a62d Remove the "last ditch" code path in join_search_one_level().
So far as I can tell, it is no longer possible for this heuristic to do
anything useful, because the new weaker definition of
have_relevant_joinclause means that any relation with a joinclause must be
considered joinable to at least one other relation.  It would still be
possible for the code block to be entered, for example if there are join
order restrictions that prevent any join of the current level from being
formed; but in that case it's just a waste of cycles to attempt to form
cartesian joins, since the restrictions will still apply.

Furthermore, IMO the existence of this code path can mask bugs elsewhere;
we would have noticed the problem with cartesian joins a lot sooner if
this code hadn't compensated for it in the simplest case.

Accordingly, let's remove it and see what happens.  I'm committing this
separately from the prerequisite changes in have_relevant_joinclause,
just to make the question easier to revisit if there is some fault in
my logic.
2012-04-13 16:07:18 -04:00
e3ffd05b02 Weaken the planner's tests for relevant joinclauses.
We should be willing to cross-join two small relations if that allows us
to use an inner indexscan on a large relation (that is, the potential
indexqual for the large table requires both smaller relations).  This
worked in simple cases but fell apart as soon as there was a join clause
to a fourth relation, because the existence of any two-relation join clause
caused the planner to not consider clauseless joins between other base
relations.  The added regression test shows an example case adapted from
a recent complaint from Benoit Delbosc.

Adjust have_relevant_joinclause, have_relevant_eclass_joinclause, and
has_relevant_eclass_joinclause to consider that a join clause mentioning
three or more relations is sufficient grounds for joining any subset of
those relations, even if we have to do so via a cartesian join.  Since such
clauses are relatively uncommon, this shouldn't affect planning speed on
typical queries; in fact it should help a bit, because the latter two
functions in particular get significantly simpler.

Although this is arguably a bug fix, I'm not going to risk back-patching
it, since it might have currently-unforeseen consequences.
2012-04-13 16:07:17 -04:00
732bfa2448 Fix cost estimation for indexscan filter conditions.
cost_index's method for estimating per-tuple costs of evaluating filter
conditions (a/k/a qpquals) was completely wrong in the presence of derived
indexable conditions, such as range conditions derived from a LIKE clause.
This was largely masked in common cases as a result of all simple operator
clauses having about the same costs, but it could show up in a big way when
dealing with functional indexes containing expensive functions, as seen for
example in bug #6579 from Istvan Endredy.  Rejigger the calculation to give
sane answers when the indexquals aren't a subset of the baserestrictinfo
list.  As a side benefit, we now do the calculation properly for cases
involving join clauses (ie, parameterized indexscans), which we always
overestimated before.

There are still cases where this is an oversimplification, such as clauses
that can be dropped because they are implied by a partial index's
predicate.  But we've never accounted for that in cost estimates before,
and I'm not convinced it's worth the cycles to try to do so.
2012-04-11 20:24:17 -04:00
a40fa613b5 Add some infrastructure for contrib/pg_stat_statements.
Add a queryId field to Query and PlannedStmt.  This is not used by the
core backend, except for being copied around at appropriate times.
It's meant to allow plug-ins to track a particular query forward from
parse analysis to execution.

The queryId is intentionally not dumped into stored rules (and hence this
commit doesn't bump catversion).  You could argue that choice either way,
but it seems better that stored rule strings not have any dependency
on plug-ins that might or might not be present.

Also, add a post_parse_analyze_hook that gets invoked at the end of
parse analysis (but only for top-level analysis of complete queries,
not cases such as analyzing a domain's default-value expression).
This is mainly meant to be used to compute and assign a queryId,
but it could have other applications.

Peter Geoghegan
2012-03-27 15:17:40 -04:00
8279eb4191 Fix planner's handling of outer PlaceHolderVars within subqueries.
For some reason, in the original coding of the PlaceHolderVar mechanism
I had supposed that PlaceHolderVars couldn't propagate into subqueries.
That is of course entirely possible.  When it happens, we need to treat
an outer-level PlaceHolderVar much like an outer Var or Aggref, that is
SS_replace_correlation_vars() needs to replace the PlaceHolderVar with
a Param, and then when building the finished SubPlan we have to provide
the PlaceHolderVar expression as an actual parameter for the SubPlan.
The handling of the contained expression is a bit delicate but it can be
treated exactly like an Aggref's expression.

In addition to the missing logic in subselect.c, prepjointree.c was failing
to search subqueries for PlaceHolderVars that need their relids adjusted
during subquery pullup.  It looks like everyplace else that touches
PlaceHolderVars got it right, though.

Per report from Mark Murawski.  In 9.1 and HEAD, queries affected by this
oversight would fail with "ERROR: Upper-level PlaceHolderVar found where
not expected".  But in 9.0 and 8.4, you'd silently get possibly-wrong
answers, since the value transmitted into the subquery wouldn't go to null
when it should.
2012-03-24 16:21:39 -04:00
81a646febe Refactor simplify_function et al to centralize argument simplification.
We were doing the recursive simplification of function/operator arguments
in half a dozen different places, with rather baroque logic to ensure it
didn't get done multiple times on some arguments.  This patch improves that
by postponing argument simplification until after we've dealt with named
parameters and added any needed default expressions.

Marti Raudsepp, somewhat hacked on by me
2012-03-23 19:15:58 -04:00
0339047bc9 Code review for protransform patches.
Fix loss of previous expression-simplification work when a transform
function fires: we must not simply revert to untransformed input tree.
Instead build a dummy FuncExpr node to pass to the transform function.
This has the additional advantage of providing a simpler, more uniform
API for transform functions.

Move documentation to a somewhat less buried spot, relocate some
poorly-placed code, be more wary of null constants and invalid typmod
values, add an opr_sanity check on protransform function signatures,
and some other minor cosmetic adjustments.

Note: although this patch touches pg_proc.h, no need for catversion
bump, because the changes are cosmetic and don't actually change the
intended catalog contents.
2012-03-23 17:29:57 -04:00