1
0
mirror of https://github.com/postgres/postgres.git synced 2025-05-06 19:59:18 +03:00

279 Commits

Author SHA1 Message Date
Tom Lane
110a6dbdeb Allow RTE_SUBQUERY rels to be considered parallel-safe.
There isn't really any reason not to; the original comments here were
partly confused about subplans versus subquery-in-FROM, and partly
dependent on restrictions that no longer apply now that subqueries return
Paths not Plans.  Depending on what's inside the subquery, it might fail
to produce any parallel_safe Paths, but that's fine.

Tom Lane and Robert Haas
2016-07-03 18:24:49 -04:00
Tom Lane
4ea9948e58 Fix up parallel-safety marking for appendrels.
The previous coding assumed that the value derived by
set_rel_consider_parallel() for an appendrel parent would be accurate for
all the appendrel's children; but this is not so, for example because one
child might scan a temp table.  Instead, apply set_rel_consider_parallel()
to each child rel as well as the parent, and then take the AND of the
results as controlling parallel safety for the appendrel as a whole.

(We might someday be able to deal more intelligently than this with cases
in which some of the childrels are parallel-safe and others not, but that's
for later.)

Robert Haas and Tom Lane
2016-07-03 17:57:28 -04:00
Tom Lane
2c6e6471af Allow treating TABLESAMPLE scans as parallel-safe.
This was the intention all along, but an extraneous "return;" in
set_rel_consider_parallel() caused sampled rels to never be marked
consider_parallel.

Since we don't have any partial tablesample path/plan type yet, there's
no possibility of parallelizing the sample scan itself; but this fix
allows such a scan to appear below a parallel join, for example.
2016-07-03 16:55:27 -04:00
Tom Lane
75be66464c Invent min_parallel_relation_size GUC to replace a hard-wired constant.
The main point of doing this is to allow the cutoff to be set very small,
even zero, to allow parallel-query behavior to be tested on relatively
small tables such as we typically use in the regression tests.  But it
might be of use to users too.  The number-of-workers scaling behavior in
create_plain_partial_paths() is pretty ad-hoc and subject to change, so
we won't expose anything about that, but the notion of not considering
parallel query at all for tables below size X seems reasonably stable.

Amit Kapila, per a suggestion from me

Discussion: <17170.1465830165@sss.pgh.pa.us>
2016-06-16 13:47:20 -04:00
Tom Lane
3303ea1a32 Remove reltarget_has_non_vars flag.
Commit b12fd41c6 added a "reltarget_has_non_vars" field to RelOptInfo,
but failed to maintain it accurately.  Since its only purpose was to skip
calls to has_parallel_hazard() in the simple case where a rel's targetlist
is all Vars, and that call is really pretty cheap in that case anyway, it
seems like this is just a case of premature optimization.  Let's drop the
flag and do the calls unconditionally until it's proven that we need more
smarts here.
2016-06-10 16:20:03 -04:00
Robert Haas
4bc424b968 pgindent run for 9.6 2016-06-09 18:02:36 -04:00
Robert Haas
b12fd41c69 Don't generate parallel paths for rels with parallel-restricted outputs.
Such paths are unsafe.  To make it cheaper to detect when this case
applies, track whether a relation's default PathTarget contains any
non-Vars.  In most cases, the answer will be no, which enables us to
determine cheaply that the target list for a proposed path is
parallel-safe.  However, subquery pull-up can create cases that
require us to inspect the target list more carefully.

Amit Kapila, reviewed by me.
2016-06-09 12:43:36 -04:00
Tom Lane
e4158319f3 Mop-up for parallel degree-ectomy.
Fix a couple of overlooked uses of "degree" terminology.  Make the parallel
worker count selection logic in create_plain_partial_paths more robust (in
particular, it failed with max_parallel_workers_per_gather set to zero).
2016-06-09 11:16:26 -04:00
Robert Haas
c9ce4a1c61 Eliminate "parallel degree" terminology.
This terminology provoked widespread complaints.  So, instead, rename
the GUC max_parallel_degree to max_parallel_workers_per_gather
(leaving room for a possible future GUC max_parallel_workers that acts
as a system-wide limit), and rename the parallel_degree reloption to
parallel_workers.  Rename structure members to match.

These changes create a dump/restore hazard for users of PostgreSQL
9.6beta1 who have set the reloption (or applied the GUC using ALTER
USER or ALTER DATABASE).
2016-06-09 10:00:26 -04:00
Tom Lane
2a2435e699 Small improvements to OPTIMIZER_DEBUG code.
Now that Paths have their own rows field, print that rather than
the parent relation's rowcount.

Show the relid sets associated with Paths using table names rather
than numbers; since this code is able to print simple Var references
using table names, it seems a bit silly that print_relids can't.

Print the cheapest_parameterized_paths list for a RelOptInfo, and
include information about a parameterized path's required_outer rels.

Noted while trying to use this feature to debug Alexander Kirkouski's
recent bug report.
2016-04-30 14:08:00 -04:00
Tom Lane
c45bf5751b Fix planner crash from pfree'ing a partial path that a GatherPath uses.
We mustn't run generate_gather_paths() during add_paths_to_joinrel(),
because that function can be invoked multiple times for the same target
joinrel.  Not only is it wasteful to build GatherPaths repeatedly, but
a later add_partial_path() could delete the partial path that a previously
created GatherPath depends on.  Instead establish the convention that we
do generate_gather_paths() for a rel only just before set_cheapest().

The code was accidentally not broken for baserels, because as of today there
never is more than one partial path for a baserel.  But that assumption
obviously has a pretty short half-life, so move the generate_gather_paths()
calls for those cases as well.

Also add some generic comments explaining how and why this all works.

Per fuzz testing by Andreas Seltenreich.

Report: <871t5pgwdt.fsf@credativ.de>
2016-04-30 12:29:21 -04:00
Robert Haas
25fe8b5f1a Add a 'parallel_degree' reloption.
The code that estimates what parallel degree should be uesd for the
scan of a relation is currently rather stupid, so add a parallel_degree
reloption that can be used to override the planner's rather limited
judgement.

Julien Rouhaud, reviewed by David Rowley, James Sewell, Amit Kapila,
and me.  Some further hacking by me.
2016-04-08 11:14:56 -04:00
Tom Lane
f9aefcb91f Support using index-only scans with partial indexes in more cases.
Previously, the planner would reject an index-only scan if any restriction
clause for its table used a column not available from the index, even
if that restriction clause would later be dropped from the plan entirely
because it's implied by the index's predicate.  This is a fairly common
situation for partial indexes because predicates using columns not included
in the index are often the most useful kind of predicate, and we have to
duplicate (or at least imply) the predicate in the WHERE clause in order
to get the index to be considered at all.  So index-only scans were
essentially unavailable with such partial indexes.

To fix, we have to do detection of implied-by-predicate clauses much
earlier in the planner.  This patch puts it in check_index_predicates
(nee check_partial_indexes), meaning it gets done for every partial index,
whereas we previously only considered this issue at createplan time,
so that the work was only done for an index actually selected for use.
That could result in a noticeable planning slowdown for queries against
tables with many partial indexes.  However, testing suggested that there
isn't really a significant cost, especially not with reasonable numbers
of partial indexes.  We do get a small additional benefit, which is that
cost_index is more accurate since it correctly discounts the evaluation
cost of clauses that will be removed.  We can also avoid considering such
clauses as potential indexquals, which saves useless matching cycles in
the case where the predicate columns aren't in the index, and prevents
generating bogus plans that double-count the clause's selectivity when
the columns are in the index.

Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and
Konstantin Knizhnik, and whacked around a little by me
2016-03-31 14:49:10 -04:00
Robert Haas
e06a38965b Support parallel aggregation.
Parallel workers can now partially aggregate the data and pass the
transition values back to the leader, which can combine the partial
results to produce the final answer.

David Rowley, based on earlier work by Haribabu Kommi.  Reviewed by
Álvaro Herrera, Tomas Vondra, Amit Kapila, James Sewell, and me.
2016-03-21 09:30:18 -04:00
Tom Lane
307c78852f Rethink representation of PathTargets.
In commit 19a541143a09c067 I did not make PathTarget a subtype of Node,
and embedded a RelOptInfo's reltarget directly into it rather than having
a separately-allocated Node.  In hindsight that was misguided
micro-optimization, enabled by the fact that at that point we didn't have
any Paths with custom PathTargets.  Now that PathTarget processing has
been fleshed out some more, it's easier to see that it's better to have
PathTarget as an indepedent Node type, even if it does cost us one more
palloc to create a RelOptInfo.  So change it while we still can.

This commit just changes the representation, without doing anything more
interesting than that.
2016-03-14 16:59:59 -04:00
Tom Lane
364a9f47ab Refactor pull_var_clause's API to make it less tedious to extend.
In commit 1d97c19a0f748e94 and later c1d9579dd8bf3c92, we extended
pull_var_clause's API by adding enum-type arguments.  That's sort of a pain
to maintain, though, because it means every time we add a new behavior we
must touch every last one of the call sites, even if there's a reasonable
default behavior that most of them could use.  Let's switch over to using a
bitmask of flags, instead; that seems more maintainable and might save a
nanosecond or two as well.  This commit changes no behavior in itself,
though I'm going to follow it up with one that does add a new behavior.

In passing, remove flatten_tlist(), which has not been used since 9.1
and would otherwise need the same API changes.

Removing these enums means that optimizer/tlist.h no longer needs to
depend on optimizer/var.h.  Changing that caused a number of C files to
need addition of #include "optimizer/var.h" (probably we can thank old
runs of pgrminclude for that); but on balance it seems like a good change
anyway.
2016-03-10 15:53:07 -05:00
Tom Lane
3fc6e2d7f5 Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is.  This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps.  Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step.  We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.

In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan.  It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation.  (A couple of regression test outputs change in consequence of
that.  However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)

There is a great deal left to do here.  This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations.  (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.)  I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.

Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
Tom Lane
05893712cc Fix build under OPTIMIZER_DEBUG.
In commit 19a541143a09c067 I replaced RelOptInfo.width with
RelOptInfo.reltarget.width, but I missed updating debug_print_rel()
for that because it's not compiled by default.
Reported by Salvador Fandino, patch by Michael Paquier.
2016-02-29 10:14:12 -05:00
Robert Haas
35746bc348 Add new FDW API to test for parallel-safety.
This is basically a bug fix; the old code assumes that a ForeignScan
is always parallel-safe, but for postgres_fdw, for example, this is
definitely false.  It should be true for file_fdw, though, since a
worker can read a file from the filesystem just as well as any other
backend process.

Original patch by Thomas Munro.  Documentation, and changes to the
comments, by me.
2016-02-26 16:14:46 +05:30
Tom Lane
19a541143a Add an explicit representation of the output targetlist to Paths.
Up to now, there's been an assumption that all Paths for a given relation
compute the same output column set (targetlist).  However, there are good
reasons to remove that assumption.  For example, an indexscan on an
expression index might be able to return the value of an expensive function
"for free".  While we have the ability to generate such a plan today in
simple cases, we don't have a way to model that it's cheaper than a plan
that computes the function from scratch, nor a way to create such a plan
in join cases (where the function computation would normally happen at
the topmost join node).  Also, we need this so that we can have Paths
representing post-scan/join steps, where the targetlist may well change
from one step to the next.  Therefore, invent a "struct PathTarget"
representing the columns we expect a plan step to emit.  It's convenient
to include the output tuple width and tlist evaluation cost in this struct,
and there will likely be additional fields in future.

While Path nodes that actually do have custom outputs will need their own
PathTargets, it will still be true that most Paths for a given relation
will compute the same tlist.  To reduce the overhead added by this patch,
keep a "default PathTarget" in RelOptInfo, and allow Paths that compute
that column set to just point to their parent RelOptInfo's reltarget.
(In the patch as committed, actually every Path is like that, since we
do not yet have any cases of custom PathTargets.)

I took this opportunity to provide some more-honest costing of
PlaceHolderVar evaluation.  Up to now, the assumption that "scan/join
reltargetlists have cost zero" was applied not only to Vars, where it's
reasonable, but also PlaceHolderVars where it isn't.  Now, we add the eval
cost of a PlaceHolderVar's expression to the first plan level where it can
be computed, by including it in the PathTarget cost field and adding that
to the cost estimates for Paths.  This isn't perfect yet but it's much
better than before, and there is a way forward to improve it more.  This
costing change affects the join order chosen for a couple of the regression
tests, changing expected row ordering.
2016-02-18 20:02:03 -05:00
Robert Haas
45be99f8cd Support parallel joins, and make related improvements.
The core innovation of this patch is the introduction of the concept
of a partial path; that is, a path which if executed in parallel will
generate a subset of the output rows in each process.  Gathering a
partial path produces an ordinary (complete) path.  This allows us to
generate paths for parallel joins by joining a partial path for one
side (which at the baserel level is currently always a Partial Seq
Scan) to an ordinary path on the other side.  This is subject to
various restrictions at present, especially that this strategy seems
unlikely to be sensible for merge joins, so only nested loops and
hash joins paths are generated.

This also allows an Append node to be pushed below a Gather node in
the case of a partitioned table.

Testing revealed that early versions of this patch made poor decisions
in some cases, which turned out to be caused by the fact that the
original cost model for Parallel Seq Scan wasn't very good.  So this
patch tries to make some modest improvements in that area.

There is much more to be done in the area of generating good parallel
plans in all cases, but this seems like a useful step forward.

Patch by me, reviewed by Dilip Kumar and Amit Kapila.
2016-01-20 14:40:26 -05:00
Bruce Momjian
ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Robert Haas
c7485a82c3 Add handling for GatherPath to print_path.
Peter Geoghegan
2015-12-02 08:19:50 -05:00
Robert Haas
80558c1f5a Generate parallel sequential scan plans in simple cases.
Add a new flag, consider_parallel, to each RelOptInfo, indicating
whether a plan for that relation could conceivably be run inside of
a parallel worker.  Right now, we're pretty conservative: for example,
it might be possible to defer applying a parallel-restricted qual
in a worker, and later do it in the leader, but right now we just
don't try to parallelize access to that relation.  That's probably
the right decision in most cases, anyway.

Using the new flag, generate parallel sequential scan plans for plain
baserels, meaning that we now have parallel sequential scan in
PostgreSQL.  The logic here is pretty unsophisticated right now: the
costing model probably isn't right in detail, and we can't push joins
beneath Gather nodes, so the number of plans that can actually benefit
from this is pretty limited right now.  Lots more work is needed.
Nevertheless, it seems time to enable this functionality so that all
this code can actually be tested easily by users and developers.

Note that, if you wish to test this functionality, it will be
necessary to set max_parallel_degree to a value greater than the
default of 0.  Once a few more loose ends have been tidied up here, we
might want to consider changing the default value of this GUC, but
I'm leaving it alone for now.

Along the way, fix a bug in cost_gather: the previous coding thought
that a Gather node's transfer overhead should be costed on the basis of
the relation size rather than the number of tuples that actually need
to be passed off to the leader.

Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 09:02:52 -05:00
Robert Haas
f0661c4e8c Make sequential scans parallel-aware.
In addition, this path fills in a number of missing bits and pieces in
the parallel infrastructure.  Paths and plans now have a parallel_aware
flag indicating whether whatever parallel-aware logic they have should
be engaged.  It is believed that we will need this flag for a number of
path/plan types, not just sequential scans, which is why the flag is
generic rather than part of the SeqScan structures specifically.
Also, execParallel.c now gives parallel nodes a chance to initialize
their PlanState nodes from the DSM during parallel worker startup.

Amit Kapila, with a fair amount of adjustment by me.  Review of previous
patch versions by Haribabu Kommi and others.
2015-11-11 08:57:52 -05:00
Tom Lane
358eaa01bf Make entirely-dummy appendrels get marked as such in set_append_rel_size.
The planner generally expects that the estimated rowcount of any relation
is at least one row, *unless* it has been proven empty by constraint
exclusion or similar mechanisms, which is marked by installing a dummy path
as the rel's cheapest path (cf. IS_DUMMY_REL).  When I split up
allpaths.c's processing of base rels into separate set_base_rel_sizes and
set_base_rel_pathlists steps, the intention was that dummy rels would get
marked as such during the "set size" step; this is what justifies an Assert
in indxpath.c's get_loop_count that other relations should either be dummy
or have positive rowcount.  Unfortunately I didn't get that quite right
for append relations: if all the child rels have been proven empty then
set_append_rel_size would come up with a rowcount of zero, which is
correct, but it didn't then do set_dummy_rel_pathlist.  (We would have
ended up with the right state after set_append_rel_pathlist, but that's
too late, if we generate indexpaths for some other rel first.)

In addition to fixing the actual bug, I installed an Assert enforcing this
convention in set_rel_size; that then allows simplification of a couple
of now-redundant tests for zero rowcount in set_append_rel_size.

Also, to cover the possibility that third-party FDWs have been careless
about not returning a zero rowcount estimate, apply clamp_row_est to
whatever an FDW comes up with as the rows estimate.

Per report from Andreas Seltenreich.  Back-patch to 9.2.  Earlier branches
did not have the separation between set_base_rel_sizes and
set_base_rel_pathlists steps, so there was no intermediate state where an
appendrel would have had inconsistent rowcount and pathlist.  It's possible
that adding the Assert to set_rel_size would be a good idea in older
branches too; but since they're not under development any more, it's likely
not worth the trouble.
2015-07-26 16:19:08 -04:00
Tom Lane
dd7a8f66ed Redesign tablesample method API, and do extensive code review.
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM.  (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.)  Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type.  This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.

Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.

Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.

Back-patch to 9.5 so that we don't have to support the original API
in production.
2015-07-25 14:39:00 -04:00
Joe Conway
b26e3d660d Make RLS work with UPDATE ... WHERE CURRENT OF
UPDATE ... WHERE CURRENT OF would not work in conjunction with
RLS. Arrange to allow the CURRENT OF expression to be pushed down.
Issue noted by Peter Geoghegan. Patch by Dean Rasheed. Back patch
to 9.5 where RLS was introduced.
2015-07-24 12:55:30 -07:00
Tom Lane
3f59be836c Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans.
When the inner side of a nestloop SEMI or ANTI join is an indexscan that
uses all the join clauses as indexquals, it can be presumed that both
matched and unmatched outer rows will be processed very quickly: for
matched rows, we'll stop after fetching one row from the indexscan, while
for unmatched rows we'll have an indexscan that finds no matching index
entries, which should also be quick.  The planner already knew about this,
but it was nonetheless charging for at least one full run of the inner
indexscan, as a consequence of concerns about the behavior of materialized
inner scans --- but those concerns don't apply in the fast case.  If the
inner side has low cardinality (many matching rows) this could make an
indexscan plan look far more expensive than it actually is.  To fix,
rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we
don't add the inner scan cost until we've inspected the indexquals, and
then we can add either the full-run cost or just the first tuple's cost as
appropriate.

Experimentation with this fix uncovered another problem: add_path and
friends were coded to disregard cheap startup cost when considering
parameterized paths.  That's usually okay (and desirable, because it thins
the path herd faster); but in this fast case for SEMI/ANTI joins, it could
result in throwing away the desired plain indexscan path in favor of a
bitmap scan path before we ever get to the join costing logic.  In the
many-matching-rows cases of interest here, a bitmap scan will do a lot more
work than required, so this is a problem.  To fix, add a per-relation flag
consider_param_startup that works like the existing consider_startup flag,
but applies to parameterized paths, and set it for relations that are the
inside of a SEMI or ANTI join.

To make this patch reasonably safe to back-patch, care has been taken to
avoid changing the planner's behavior except in the very narrow case of
SEMI/ANTI joins with inner indexscans.  There are places in
compare_path_costs_fuzzily and add_path_precheck that are not terribly
consistent with the new approach, but changing them will affect planner
decisions at the margins in other cases, so we'll leave that for a
HEAD-only fix.

Back-patch to 9.3; before that, the consider_startup flag didn't exist,
meaning that the second aspect of the patch would be too invasive.

Per a complaint from Peter Holzer and analysis by Tomas Vondra.
2015-06-03 11:59:10 -04:00
Bruce Momjian
807b9e0dff pgindent run for 9.5 2015-05-23 21:35:49 -04:00
Andres Freund
f3d3118532 Support GROUPING SETS, CUBE and ROLLUP.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.

This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.

The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.

The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.

Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage.  The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting.  The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.

A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.

Needs a catversion bump because stored rules may change.

Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
    Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:46:31 +02:00
Simon Riggs
f6d208d6e5 TABLESAMPLE, SQL Standard and extensible
Add a TABLESAMPLE clause to SELECT statements that allows
user to specify random BERNOULLI sampling or block level
SYSTEM sampling. Implementation allows for extensible
sampling functions to be written, using a standard API.
Basic version follows SQLStandard exactly. Usable
concrete use cases for the sampling API follow in later
commits.

Petr Jelinek

Reviewed by Michael Paquier and Simon Riggs
2015-05-15 14:37:10 -04:00
Stephen Frost
dcbf5948e1 Improve qual pushdown for RLS and SB views
The original security barrier view implementation, on which RLS is
built, prevented all non-leakproof functions from being pushed down to
below the view, even when the function was not receiving any data from
the view.  This optimization improves on that situation by, instead of
checking strictly for non-leakproof functions, it checks for Vars being
passed to non-leakproof functions and allows functions which do not
accept arguments or whose arguments are not from the current query level
(eg: constants can be particularly useful) to be pushed down.

As discussed, this does mean that a function which is pushed down might
gain some idea that there are rows meeting a certain criteria based on
the number of times the function is called, but this isn't a
particularly new issue and the documentation in rules.sgml already
addressed similar covert-channel risks.  That documentation is updated
to reflect that non-leakproof functions may be pushed down now, if
they meet the above-described criteria.

Author: Dean Rasheed, with a bit of rework to make things clearer,
along with comment and documentation updates from me.
2015-04-27 12:29:42 -04:00
Tom Lane
70d44dd9de Fix obsolete comment in set_rel_size().
The cross-reference to set_append_rel_pathlist() was obsoleted by
commit e2fa76d80ba571d4de8992de6386536867250474, which split what
had been set_rel_pathlist() and child routines into two sets of
functions.  But I (tgl) evidently missed updating this comment.

Back-patch to 9.2 to avoid unnecessary divergence among branches.

Amit Langote
2015-04-24 15:18:07 -04:00
Bruce Momjian
4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane
f4e031c662 Add bms_next_member(), and use it where appropriate.
This patch adds a way of iterating through the members of a bitmapset
nondestructively, unlike the old way with bms_first_member().  While
bms_next_member() is very slightly slower than bms_first_member()
(at least for typical-size bitmapsets), eliminating the need to palloc
and pfree a temporary copy of the target bitmapset is a significant win.
So this method should be preferred in all cases where a temporary copy
would be necessary.

Tom Lane, with suggestions from Dean Rasheed and David Rowley
2014-11-28 13:37:25 -05:00
Stephen Frost
143b39c185 Rename pg_rowsecurity -> pg_policy and other fixes
As pointed out by Robert, we should really have named pg_rowsecurity
pg_policy, as the objects stored in that catalog are policies.  This
patch fixes that and updates the column names to start with 'pol' to
match the new catalog name.

The security consideration for COPY with row level security, also
pointed out by Robert, has also been addressed by remembering and
re-checking the OID of the relation initially referenced during COPY
processing, to make sure it hasn't changed under us by the time we
finish planning out the query which has been built.

Robert and Alvaro also commented on missing OCLASS and OBJECT entries
for POLICY (formerly ROWSECURITY or POLICY, depending) in various
places.  This patch fixes that too, which also happens to add the
ability to COMMENT on policies.

In passing, attempt to improve the consistency of messages, comments,
and documentation as well.  This removes various incarnations of
'row-security', 'row-level security', 'Row-security', etc, in favor
of 'policy', 'row level security' or 'row_security' as appropriate.

Happy Thanksgiving!
2014-11-27 01:15:57 -05:00
Tom Lane
c2ea2285e9 Simplify API for initially hooking custom-path providers into the planner.
Instead of register_custom_path_provider and a CreateCustomScanPath
callback, let's just provide a standard function hook in set_rel_pathlist.
This is more flexible than what was previously committed, is more like the
usual conventions for planner hooks, and requires less support code in the
core.  We had discussed this design (including centralizing the
set_cheapest() calls) back in March or so, so I'm not sure why it wasn't
done like this already.
2014-11-21 14:05:46 -05:00
Robert Haas
0b03e5951b Introduce custom path and scan providers.
This allows extension modules to define their own methods for
scanning a relation, and get the core code to use them.  It's
unclear as yet how much use this capability will find, but we
won't find out if we never commit it.

KaiGai Kohei, reviewed at various times and in various levels
of detail by Shigeru Hanada, Tom Lane, Andres Freund, Álvaro
Herrera, and myself.
2014-11-07 17:34:36 -05:00
Tom Lane
d222585a9f Allow pushdown of WHERE quals into subqueries with window functions.
We can allow this even without any specific knowledge of the semantics
of the window function, so long as pushed-down quals will either accept
every row in a given window partition, or reject every such row.  Because
window functions act only within a partition, such a case can't result
in changing the window functions' outputs for any surviving row.
Eliminating entire partitions in this way obviously can reduce the cost
of the window-function computations substantially.

The fly in the ointment is that it's hard to be entirely sure whether
this is true for an arbitrary qual condition.  This patch allows pushdown
if (a) the qual references only partitioning columns, and (b) the qual
contains no volatile functions.  We are at risk of incorrect results if
the qual can produce different answers for values that the partitioning
equality operator sees as equal.  While it's not hard to invent cases
for which that can happen, it seems to seldom be a problem in practice,
since no one has complained about a similar assumption that we've had
for many years with respect to DISTINCT.  The potential performance
gains seem to be worth the risk.

David Rowley, reviewed by Vik Fearing; some credit is due also to
Thomas Mayer who did considerable preliminary investigation.
2014-06-27 23:08:08 -07:00
Tom Lane
1147035203 Disallow pushing volatile qual expressions down into DISTINCT subqueries.
A WHERE clause applied to the output of a subquery with DISTINCT should
theoretically be applied only once per distinct row; but if we push it
into the subquery then it will be evaluated at each row before duplicate
elimination occurs.  If the qual is volatile this can give rise to
observably wrong results, so don't do that.

While at it, refactor a little bit to allow subquery_is_pushdown_safe
to report more than one kind of restrictive condition without indefinitely
expanding its argument list.

Although this is a bug fix, it seems unwise to back-patch it into released
branches, since it might de-optimize plans for queries that aren't giving
any trouble in practice.  So apply to 9.4 but not further back.
2014-06-27 11:08:48 -07:00
Tom Lane
9d4444a6fc Preserve exposed type of subquery outputs when substituting NULLs.
I thought I could get away with hardcoded int4 here, but the buildfarm
says differently.
2014-06-12 17:11:53 -04:00
Tom Lane
55d5b3c082 Remove unnecessary output expressions from unflattened subqueries.
If a sub-select-in-FROM gets flattened into the upper query, then we
naturally get rid of any output columns that are defined in the sub-select
text but not actually used in the upper query.  However, this doesn't
happen when it's not possible to flatten the subquery, for example because
it contains GROUP BY, LIMIT, etc.  Allowing the subquery to compute useless
output columns is often fairly harmless, but sometimes it has significant
performance cost: the unused output might be an expensive expression,
or it might be a Var from a relation that we could remove entirely (via
the join-removal logic) if only we realized that we didn't really need
that Var.  Situations like this are common when expanding views, so it
seems worth taking the trouble to detect and remove unused outputs.

Because the upper query's Var numbering for subquery references depends on
positions in the subquery targetlist, we don't want to renumber the items
we leave behind.  Instead, we can implement "removal" by replacing the
unwanted expressions with simple NULL constants.  This wastes a few cycles
at runtime, but not enough to justify more work in the planner.
2014-06-12 13:12:53 -04:00
Bruce Momjian
0a78320057 pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
2014-05-06 12:12:18 -04:00
Tom Lane
a87c729153 Fix EquivalenceClass processing for nested append relations.
The original coding of EquivalenceClasses didn't foresee that appendrel
child relations might themselves be appendrels; but this is possible for
example when a UNION ALL subquery scans a table with inheritance children.
The oversight led to failure to optimize ordering-related issues very well
for the grandchild tables.  After some false starts involving explicitly
flattening the appendrel representation, we found that this could be fixed
easily by removing a few implicit assumptions about appendrel parent rels
not being children themselves.

Kyotaro Horiguchi and Tom Lane, reviewed by Noah Misch
2014-03-28 11:50:01 -04:00
Bruce Momjian
7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane
f343a880d5 Extract restriction OR clauses whether or not they are indexable.
It's possible to extract a restriction OR clause from a join clause that
has the form of an OR-of-ANDs, if each sub-AND includes a clause that
mentions only one specific relation.  While PG has been aware of that idea
for many years, the code previously only did it if it could extract an
indexable OR clause.  On reflection, though, that seems a silly limitation:
adding a restriction clause can be a win by reducing the number of rows
that have to be filtered at the join step, even if we have to test the
clause as a plain filter clause during the scan.  This should be especially
useful for foreign tables, where the change can cut the number of rows that
have to be retrieved from the foreign server; but testing shows it can win
even on local tables.  Per a suggestion from Robert Haas.

As a heuristic, I made the code accept an extracted restriction clause
if its estimated selectivity is less than 0.9, which will probably result
in accepting extracted clauses just about always.  We might need to tweak
that later based on experience.

Since the code no longer has even a weak connection to Path creation,
remove orindxpath.c and create a new file optimizer/util/orclauses.c.

There's some additional janitorial cleanup of now-dead code that needs
to happen, but it seems like that's a fit subject for a separate commit.
2013-12-30 12:24:37 -05:00
Tom Lane
784e762e88 Support multi-argument UNNEST(), and TABLE() syntax for multiple functions.
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry.  The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others.  This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.

This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.

Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).

The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does.  There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST().  After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.

Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
2013-11-21 19:37:20 -05:00
Tom Lane
9e7e29c75a Fix planner problems with LATERAL references in PlaceHolderVars.
The planner largely failed to consider the possibility that a
PlaceHolderVar's expression might contain a lateral reference to a Var
coming from somewhere outside the PHV's syntactic scope.  We had a previous
report of a problem in this area, which I tried to fix in a quick-hack way
in commit 4da6439bd8553059766011e2a42c6e39df08717f, but Antonin Houska
pointed out that there were still some problems, and investigation turned
up other issues.  This patch largely reverts that commit in favor of a more
thoroughly thought-through solution.  The new theory is that a PHV's
ph_eval_at level cannot be higher than its original syntactic level.  If it
contains lateral references, those don't change the ph_eval_at level, but
rather they create a lateral-reference requirement for the ph_eval_at join
relation.  The code in joinpath.c needs to handle that.

Another issue is that createplan.c wasn't handling nested PlaceHolderVars
properly.

In passing, push knowledge of lateral-reference checks for join clauses
into join_clause_is_movable_to.  This is mainly so that FDWs don't need
to deal with it.

This patch doesn't fix the original join-qual-placement problem reported by
Jeremy Evans (and indeed, one of the new regression test cases shows the
wrong answer because of that).  But the PlaceHolderVar problems need to be
fixed before that issue can be addressed, so committing this separately
seems reasonable.
2013-08-17 20:22:37 -04:00
Tom Lane
5372275b4b Fix planning of parameterized appendrel paths with expensive join quals.
The code in set_append_rel_pathlist() for building parameterized paths
for append relations (inheritance and UNION ALL combinations) supposed
that the cheapest regular path for a child relation would still be cheapest
when reparameterized.  Which might not be the case, particularly if the
added join conditions are expensive to compute, as in a recent example from
Jeff Janes.  Fix it to compare child path costs *after* reparameterizing.
We can short-circuit that if the cheapest pre-existing path is already
parameterized correctly, which seems likely to be true often enough to be
worth checking for.

Back-patch to 9.2 where parameterized paths were introduced.
2013-07-07 22:37:24 -04:00