This patch introduces "pg_blocking_pids(int) returns int[]", which returns
the PIDs of any sessions that are blocking the session with the given PID.
Historically people have obtained such information using a self-join on
the pg_locks view, but it's unreasonably tedious to do it that way with any
modicum of correctness, and the addition of parallel queries has pretty
much broken that approach altogether. (Given some more columns in the view
than there are today, you could imagine handling parallel-query cases with
a 4-way join; but ugh.)
The new function has the following behaviors that are painful or impossible
to get right via pg_locks:
1. Correctly understands which lock modes block which other ones.
2. In soft-block situations (two processes both waiting for conflicting lock
modes), only the one that's in front in the wait queue is reported to
block the other.
3. In parallel-query cases, reports all sessions blocking any member of
the given PID's lock group, and reports a session by naming its leader
process's PID, which will be the pg_backend_pid() value visible to
clients.
The motivation for doing this right now is mostly to fix the isolation
tests. Commit 38f8bdcac4 lobotomized
isolationtester's is-it-waiting query by removing its ability to recognize
nonconflicting lock modes, as a crude workaround for the inability to
handle soft-block situations properly. But even without the lock mode
tests, the old query was excessively slow, particularly in
CLOBBER_CACHE_ALWAYS builds; some of our buildfarm animals fail the new
deadlock-hard test because the deadlock timeout elapses before they can
probe the waiting status of all eight sessions. Replacing the pg_locks
self-join with use of pg_blocking_pids() is not only much more correct, but
a lot faster: I measure it at about 9X faster in a typical dev build with
Asserts, and 3X faster in CLOBBER_CACHE_ALWAYS builds. That should provide
enough headroom for the slower CLOBBER_CACHE_ALWAYS animals to pass the
test, without having to lengthen deadlock_timeout yet more and thus slow
down the test for everyone else.
We don't really need this field, because it's either zero or redundant with
PGPROC.pid. The use of zero to mark "not a group leader" is not necessary
since we can just as well test whether lockGroupLeader is NULL. This does
not save very much, either as to code or data, but the simplification seems
worthwhile anyway.
In 4b4b680c3 I accidentally used sizeof(PrivateRefCountArray) instead of
sizeof(PrivateRefCountEntry) when creating the refcount overflow
hashtable. As the former is bigger than the latter, this luckily only
resulted in a slightly increased memory usage when many buffers are
pinned in a backend.
Reported-By: Takashi Horikawa
Discussion: 73FA3881462C614096F815F75628AFCD035A48C3@BPXM01GP.gisp.nec.co.jp
Backpatch: 9.5, where thew new ref count infrastructure was introduced
Reflow text in lock manager README so that it fits within 80 columns.
Correct some mistakes. Expand the README to explain not only why group
locking exists but also the data structures that support it. Improve
comments related to group locking several files. Change the name of a
macro argument for improved clarity.
Most of these problems were reported by Tom Lane, but I found a few
of them myself.
Robert Haas and Tom Lane
The API spec for this function was changed completely (and for the better)
by commit 3cba8999b3, but it didn't bother
with anything as mundane as updating the comments.
This finishes the work - spread across many commits over the last
several months - of putting each type of lock other than the named
individual locks into a separate tranche.
Amit Kapila
Commit 0e141c0fbb introduced a new
facility to reduce ProcArrayLock contention by clearing several XIDs
from the ProcArray under a single lock acquisition. The names
initially chosen were deemed not to be very good choices, so commit
4aec49899e renamed them. But now it
seems like we still didn't get it right. A pending patch wants to
add similar infrastructure for batching CLOG updates, so the names
need to be clear enough to allow a new set of structure members with
a related purpose.
Amit Kapila
As of commit c1772ad922, there's no
longer any way of requesting additional LWLocks in the main tranche,
so we don't need NumLWLocks() or LWLockAssign() any more. Also,
some of the allocation counters that we had previously aren't needed
any more either.
Amit Kapila
Further investigation says that there may be some slow operations after
we've finished ShutdownXLOG(), so add some more log messages to try to
isolate that. This is all temporary code too.
Early returns from the buildfarm show that there's a bit of a gap in the
logging I added in 3971f64843: the portion of CreateCheckPoint()
after CheckPointGuts() can take a fair amount of time. Add a few more
log messages in that section of code. This too shall be reverted later.
This is a quick hack, due to be reverted when its purpose has been served,
to try to gather information about why some of the buildfarm critters
regularly fail with "postmaster does not shut down" complaints. Maybe they
are just really overloaded, but maybe something else is going on. Hence,
instrument pg_ctl to print the current time when it starts waiting for
postmaster shutdown and when it gives up, and add a lot of logging of the
current time in the server's checkpoint and shutdown code paths.
No attempt has been made to make this pretty. I'm not even totally sure
if it will build on Windows, but we'll soon find out.
For locking purposes, we now regard heavyweight locks as mutually
non-conflicting between cooperating parallel processes. There are some
possible pitfalls to this approach that are not to be taken lightly,
but it works OK for now and can be changed later if we find a better
approach. Without this, it's very easy for parallel queries to
silently self-deadlock if the user backend holds strong relation locks.
Robert Haas, with help from Amit Kapila. Thanks to Noah Misch and
Andres Freund for extensive discussion of possible issues with this
approach.
The previous RequestAddinLWLocks() method had several disadvantages.
First, the locks would be in the main tranche; we've recently decided
that it's useful for LWLocks used for separate purposes to have
separate tranche IDs. Second, there wasn't any correlation between
what code called RequestAddinLWLocks() and what code called
LWLockAssign(); when multiple modules are in use, it could become
quite difficult to troubleshoot problems where LWLockAssign() ran out
of locks. To fix, create a concept of named LWLock tranches which
can be used either by extension or by core code.
Amit Kapila and Robert Haas
This is following in a long train of similar changes and for the same
reasons - see b319356f0e and
fe702a7b3f inter alia.
Author: Amit Kapila
Reviewed-by: Alexander Korotkov, Robert Haas
Previously, each PGPROC's backendLock was part of the main tranche,
and the PGPROC just contained a pointer. Now, the actual LWLock is
part of the PGPROC.
As with previous, similar patches, this makes it significantly easier
to identify these lwlocks in LWLOCK_STATS or Trace_lwlocks output
and improves modularity.
Author: Ildus Kurbangaliev
Reviewed-by: Amit Kapila, Robert Haas
It's entirely surprising that mdnblocks() has the side effect of
creating new files on disk, so let's make it not do that. One
consequence of the old behavior is that, if running on a damaged
cluster that is missing a file, mdnblocks() can recreate the file
and allow a subsequent _mdfd_getseg() for a higher segment to succeed.
This happens because, while mdnblocks() stops when it finds a segment
that is shorter than 1GB, _mdfd_getseg() has no such check, and thus
the empty file created by mdnblocks() can allow it to continue its
traversal and find higher-numbered segments which remain.
It might be a good idea for _mdfd_getseg() to actually verify that
each segment it finds is exactly 1GB before proceeding to the next
one, but that would involve some additional system calls, so for
now I'm just doing this much.
Patch by me, per off-list analysis by Kevin Grittner and Rahila Syed.
Review by Andres Freund.
Move the content lock directly into the BufferDesc, so that locking and
pinning a buffer touches only one cache line rather than two. Adjust
the definition of BufferDesc slightly so that this doesn't make the
BufferDesc any larger than one cache line (at least on platforms where
a spinlock is only 1 or 2 bytes).
We can't fit the I/O locks into the BufferDesc and stay within one
cache line, so move those to a completely separate tranche. This
leaves a relatively limited number of LWLocks in the main tranche, so
increase the padding of those remaining locks to a full cache line,
rather than allowing adjacent locks to share a cache line, hopefully
reducing false sharing.
Performance testing shows that these changes make little difference
on laptop-class machines, but help significantly on larger servers,
especially those with more than 2 sockets.
Andres Freund, originally based on an earlier patch by Simon Riggs.
Review and cosmetic adjustments (including heavy rewriting of the
comments) by me.
It's a bit cumbersome to use LWLockNewTrancheId(), because the returned
value needs to be shared between backends so that each backend can call
LWLockRegisterTranche() with the correct ID. So, for built-in tranches,
use a hard-coded value instead.
This is motivated by an upcoming patch adding further built-in tranches.
Andres Freund and Robert Haas
e3f4cfc7 introduced a LWLockHeldByMe() call, without the corresponding
Assert() surrounding it.
Spotted by Coverity.
Backpatch: 9.1+, like the previous commit
At the end of crash recovery, unlogged relations are reset to the empty
state, using their init fork as the template. The init fork is copied to
the main fork without going through shared buffers. Unfortunately WAL
replay so far has not necessarily flushed writes from shared buffers to
disk at that point. In normal crash recovery, and before the
introduction of 'fast promotions' in fd4ced523 / 9.3, the
END_OF_RECOVERY checkpoint flushes the buffers out in time. But with
fast promotions that's not the case anymore.
To fix, force WAL writes targeting the init fork to be flushed
immediately (using the new FlushOneBuffer() function). In 9.5+ that
flush can centrally be triggered from the code dealing with restoring
full page writes (XLogReadBufferForRedoExtended), in earlier releases
that responsibility is in the hands of XLOG_HEAP_NEWPAGE's replay
function.
Backpatch to 9.1, even if this currently is only known to trigger in
9.3+. Flushing earlier is more robust, and it is advantageous to keep
the branches similar.
Typical symptoms of this bug are errors like
'ERROR: index "..." contains unexpected zero page at block 0'
shortly after promoting a node.
Reported-By: Thom Brown
Author: Andres Freund and Michael Paquier
Discussion: 20150326175024.GJ451@alap3.anarazel.de
Backpatch: 9.1-
Prior to commit 0709b7ee72, access to
variables within a spinlock-protected critical section had to be done
through a volatile pointer, but that should no longer be necessary.
Review by Andres Freund
This makes it significantly easier to identify these lwlocks in
LWLOCK_STATS or Trace_lwlocks output. It's also arguably better
from a modularity standpoint, since lwlock.c no longer needs to
know anything about the LWLock needs of the higher-level SLRU
facility.
Ildus Kurbangaliev, reviewd by Álvaro Herrera and by me.
Commit a1480ec1d3 purported to fix the
problems with commit b2ccb5f4e6, but it
didn't completely fix them. The problem is that the checks were
performed in the wrong order, leading to a race condition. If the
sender attached, sent a message, and detached after the receiver
called shm_mq_get_sender and before the receiver called
shm_mq_counterparty_gone, we'd incorrectly return SHM_MQ_DETACHED
before all messages were read. Repair by reversing the order of
operations, and add a long comment explaining why this new logic is
(hopefully) correct.
On insert the CheckForSerializableConflictIn() test was performed
before the page(s) which were going to be modified had been locked
(with an exclusive buffer content lock). If another process
acquired a relation SIReadLock on the heap and scanned to a page on
which an insert was going to occur before the page was so locked,
a rw-conflict would be missed, which could allow a serialization
anomaly to be missed. The window between the check and the page
lock was small, so the bug was generally not noticed unless there
was high concurrency with multiple processes inserting into the
same table.
This was reported by Peter Bailis as bug #11732, by Sean Chittenden
as bug #13667, and by others.
The race condition was eliminated in heap_insert() by moving the
check down below the acquisition of the buffer lock, which had been
the very next statement. Because of the loop locking and unlocking
multiple buffers in heap_multi_insert() a check was added after all
inserts were completed. The check before the start of the inserts
was left because it might avoid a large amount of work to detect a
serialization anomaly before performing the all of the inserts and
the related WAL logging.
While investigating this bug, other SSI bugs which were even harder
to hit in practice were noticed and fixed, an unnecessary check
(covered by another check, so redundant) was removed from
heap_update(), and comments were improved.
Back-patch to all supported branches.
Kevin Grittner and Thomas Munro
If the counterparty writes some data into the queue and then detaches,
it's wrong to return SHM_MQ_DETACHED right away. If we do that, we
fail to read whatever was written.
The shm_mq mechanism was intended to optionally notice when the process
on the other end of the queue fails to attach to the queue. It does
this by allowing the user to pass a BackgroundWorkerHandle; if the
background worker in question is launched and dies without attaching
to the queue, then we know it never will. This logic works OK in
blocking mode, but when called with nowait = true we fail to notice
that this has happened due to an asymmetry in the logic. Repair.
Reported off-list by Rushabh Lathia. Patch by me.
Prior to commit 0709b7ee72, access to
variables within a spinlock-protected critical section had to be done
through a volatile pointer, but that should no longer be necessary.
Michael Paquier
Prior to commit 0709b7ee72, access to
variables within a spinlock-protected critical section had to be done
through a volatile pointer, but that should no longer be necessary.
Thomas Munro
This flag has proven to be a recipe for bugs, and it doesn't seem like
it can really buy anything in terms of performance. So let's just
*always* set the process latch when we receive SIGUSR1 instead of
trying to do it only when needed.
Per my recent proposal on pgsql-hackers.
The fact that multixact truncations are not WAL logged has caused a fair
share of problems. Amongst others it requires to do computations during
recovery while the database is not in a consistent state, delaying
truncations till checkpoints, and handling members being truncated, but
offset not.
We tried to put bandaids on lots of these issues over the last years,
but it seems time to change course. Thus this patch introduces WAL
logging for multixact truncations.
This allows:
1) to perform the truncation directly during VACUUM, instead of delaying it
to the checkpoint.
2) to avoid looking at the offsets SLRU for truncation during recovery,
we can just use the master's values.
3) simplify a fair amount of logic to keep in memory limits straight,
this has gotten much easier
During the course of fixing this a bunch of additional bugs had to be
fixed:
1) Data was not purged from memory the member's SLRU before deleting
segments. This happened to be hard or impossible to hit due to the
interlock between checkpoints and truncation.
2) find_multixact_start() relied on SimpleLruDoesPhysicalPageExist - but
that doesn't work for offsets that haven't yet been flushed to
disk. Add code to flush the SLRUs to fix. Not pretty, but it feels
slightly safer to only make decisions based on actual on-disk state.
3) find_multixact_start() could be called concurrently with a truncation
and thus fail. Via SetOffsetVacuumLimit() that could lead to a round
of emergency vacuuming. The problem remains in
pg_get_multixact_members(), but that's quite harmless.
For now this is going to only get applied to 9.5+, leaving the issues in
the older branches in place. It is quite possible that we need to
backpatch at a later point though.
For the case this gets backpatched we need to handle that an updated
standby may be replaying WAL from a not-yet upgraded primary. We have to
recognize that situation and use "old style" truncation (i.e. looking at
the SLRUs) during WAL replay. In contrast to before, this now happens in
the startup process, when replaying a checkpoint record, instead of the
checkpointer. Doing truncation in the restartpoint is incorrect, they
can happen much later than the original checkpoint, thereby leading to
wraparound. To avoid "multixact_redo: unknown op code 48" errors
standbys would have to be upgraded before primaries.
A later patch will bump the WAL page magic, and remove the legacy
truncation codepaths. Legacy truncation support is just included to make
a possible future backpatch easier.
Discussion: 20150621192409.GA4797@alap3.anarazel.de
Reviewed-By: Robert Haas, Alvaro Herrera, Thomas Munro
Backpatch: 9.5 for now
RemoveLocalLock() must consider the possibility that LockAcquireExtended()
failed to palloc the initial space for a locallock's lockOwners array.
I had evidently meant to cope with this hazard when the code was originally
written (commit 1785acebf2), but missed that
the pfree needed to be protected with an if-test. Just to make sure things
are left in a clean state, reset numLockOwners as well.
Per low-memory testing by Andreas Seltenreich. Back-patch to all supported
branches.
The shm_mq mechanism was built to send error (and notice) messages and
tuples between backends. However, shm_mq itself only deals in raw
bytes. Since commit 2bd9e412f9, we have
had infrastructure for one message to redirect protocol messages to a
queue and for another backend to parse them and do useful things with
them. This commit introduces a somewhat analogous facility for tuples
by adding a new type of DestReceiver, DestTupleQueue, which writes
each tuple generated by a query into a shm_mq, and a new
TupleQueueFunnel facility which reads raw tuples out of the queue and
reconstructs the HeapTuple format expected by the executor.
The TupleQueueFunnel abstraction supports reading from multiple tuple
streams at the same time, but only in round-robin fashion. Someone
could imaginably want other policies, but this should be good enough
to meet our short-term needs related to parallel query, and we can
always extend it later.
This also makes one minor addition to the shm_mq API that didn'
seem worth breaking out as a separate patch.
Extracted from Amit Kapila's parallel sequential scan patch. This
code was originally written by me, and then it was revised by Amit,
and then it was revised some more by me.
Naming the individual lwlocks seems like something that may be useful
for other types of debugging, monitoring, or instrumentation output,
but this commit just implements it for the specific case of
trace_lwlocks.
Patch by me, reviewed by Amit Kapila and Kyotaro Horiguchi
Per discussion, nowadays it is possible to have tablespaces that have
wildly different I/O characteristics from others. Setting different
effective_io_concurrency parameters for those has been measured to
improve performance.
Author: Julien Rouhaud
Reviewed by: Andres Freund
Post-commit review by Andres Freund discovered a couple of concurrency
bugs in the original patch: specifically, if the leader cleared a
follower's XID before it reached PGSemaphoreLock, the semaphore would be
left in the wrong state; and if another process did PGSemaphoreUnlock
for some unrelated reason, we might resume execution before the fact
that our XID was cleared was globally visible.
Also, improve the wording of some comments, rename nextClearXidElem
to firstClearXidElem in PROC_HDR for clarity, and drop some volatile
qualifiers that aren't necessary.
Amit Kapila, reviewed and slightly revised by me.
This fixes a bunch of somewhat pedantic warnings with new
compilers. Since by far the majority of other functions definitions use
the (void) style it just seems to be consistent to do so as well in the
remaining few places.
In 4b4b680c I passed a buffer index number (starting from 0) instead of
a proper Buffer id (which start from 1 for shared buffers) in two
places.
This wasn't noticed so far as one of those locations isn't compiled at
all (PrintPinnedBufs) and the other one (InvalidBuffer) requires a
unlikely, but possible, set of circumstances to trigger a symptom.
To reduce the likelihood of such incidents a bit also convert existing
open coded mappings from buffer descriptors to buffer ids with
BufferDescriptorGetBuffer().
Author: Qingqing Zhou
Reported-By: Qingqing Zhou
Discussion: CAJjS0u2ai9ooUisKtkV8cuVUtEkMTsbK8c7juNAjv8K11zeCQg@mail.gmail.com
Backpatch: 9.5 where the private ref count infrastructure was introduced