mode while callers hold pointers to in-memory tuples. I reported this for
the case of nodeWindowAgg's primary scan tuple, but inspection of the code
shows that all of the calls in nodeWindowAgg and nodeCtescan are at risk.
For the moment, fix it with a rather brute-force approach of copying
whenever one of the at-risk callers requests a tuple. Later we might
think of some sort of reference-count approach to reduce tuple copying.
upcoming window-functions patch. First, tuplestore_trim is now an
exported function that must be explicitly invoked by callers at
appropriate times, rather than something that tuplestore tries to do
behind the scenes. Second, a read pointer that is marked as allowing
backward scan no longer prevents truncation. This means that a read pointer
marked as having BACKWARD but not REWIND capability can only safely read
backwards as far as the oldest other read pointer. (The expected use pattern
for this involves having another read pointer that serves as the truncation
fencepost.)
This facility replaces the former mark/restore support but is otherwise
upward-compatible with previous uses. It's expected to be needed for
single evaluation of CTEs and also for window functions, so I'm committing
it separately instead of waiting for either one of those patches to be
finished. Per discussion with Greg Stark and Hitoshi Harada.
Note: I removed nodeFunctionscan's mark/restore support, instead of bothering
to update it for this change, because it was dead code anyway.
is using mark/restore but not rewind or backward-scan capability. Insert a
materialize plan node between a mergejoin and its inner child if the inner
child is a sort that is expected to spill to disk. The materialize shields
the sort from the need to do mark/restore and thereby allows it to perform
its final merge pass on-the-fly; while the materialize itself is normally
cheap since it won't spill to disk unless the number of tuples with equal
key values exceeds work_mem.
Greg Stark, with some kibitzing from Tom Lane.
tuples with less header overhead than a regular HeapTuple, per my
recent proposal. Teach TupleTableSlot code how to deal with these.
As proof of concept, change tuplestore.c to store MinimalTuples instead
of HeapTuples. Future patches will expand the concept to other places
where it is useful.
bits indicating which optional capabilities can actually be exercised
at runtime. This will allow Sort and Material nodes, and perhaps later
other nodes, to avoid unnecessary overhead in common cases.
This commit just adds the infrastructure and arranges to pass the correct
flag values down to plan nodes; none of the actual optimizations are here
yet. I'm committing this separately in case anyone wants to measure the
added overhead. (It should be negligible.)
Simon Riggs and Tom Lane
generate their output tuple descriptors from their target lists (ie, using
ExecAssignResultTypeFromTL()). We long ago fixed things so that all node
types have minimally valid tlists, so there's no longer any good reason to
have two different ways of doing it. This change is needed to fix bug
reported by Hayden James: the fix of 2005-11-03 to emit the correct column
names after optimizing away a SubqueryScan node didn't work if the new
top-level plan node used ExecAssignResultTypeFromOuterPlan to generate its
tupdesc, since the next plan node down won't have the correct column labels.
of tuples when passing data up through multiple plan nodes. A slot can now
hold either a normal "physical" HeapTuple, or a "virtual" tuple consisting
of Datum/isnull arrays. Upper plan levels can usually just copy the Datum
arrays, avoiding heap_formtuple() and possible subsequent nocachegetattr()
calls to extract the data again. This work extends Atsushi Ogawa's earlier
patch, which provided the key idea of adding Datum arrays to TupleTableSlots.
(I believe however that something like this was foreseen way back in Berkeley
days --- see the old comment on ExecProject.) A test case involving many
levels of join of fairly wide tables (about 80 columns altogether) showed
about 3x overall speedup, though simple queries will probably not be
helped very much.
I have also duplicated some code in heaptuple.c in order to provide versions
of heap_formtuple and friends that use "bool" arrays to indicate null
attributes, instead of the old convention of "char" arrays containing either
'n' or ' '. This provides a better match to the convention used by
ExecEvalExpr. While I have not made a concerted effort to get rid of uses
of the old routines, I think they should be deprecated and eventually removed.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
Make btree index creation and initial validation of foreign-key constraints
use maintenance_work_mem rather than work_mem as their memory limit.
Add some code to guc.c to allow these variables to be referenced by their
old names in SHOW and SET commands, for backwards compatibility.
(materialization into a tuple store) discussed on pgsql-hackers earlier.
I've updated the documentation and the regression tests.
Notes on the implementation:
- I needed to change the tuple store API slightly -- it assumes that it
won't be used to hold data across transaction boundaries, so the temp
files that it uses for on-disk storage are automatically reclaimed at
end-of-transaction. I added a flag to tuplestore_begin_heap() to control
this behavior. Is changing the tuple store API in this fashion OK?
- in order to store executor results in a tuple store, I added a new
CommandDest. This works well for the most part, with one exception: the
current DestFunction API doesn't provide enough information to allow the
Executor to store results into an arbitrary tuple store (where the
particular tuple store to use is chosen by the call site of
ExecutorRun). To workaround this, I've temporarily hacked up a solution
that works, but is not ideal: since the receiveTuple DestFunction is
passed the portal name, we can use that to lookup the Portal data
structure for the cursor and then use that to get at the tuple store the
Portal is using. This unnecessarily ties the Portal code with the
tupleReceiver code, but it works...
The proper fix for this is probably to change the DestFunction API --
Tom suggested passing the full QueryDesc to the receiveTuple function.
In that case, callers of ExecutorRun could "subclass" QueryDesc to add
any additional fields that their particular CommandDest needed to get
access to. This approach would work, but I'd like to think about it for
a little bit longer before deciding which route to go. In the mean time,
the code works fine, so I don't think a fix is urgent.
- (semi-related) I added a NO SCROLL keyword to DECLARE CURSOR, and
adjusted the behavior of SCROLL in accordance with the discussion on
-hackers.
- (unrelated) Cleaned up some SGML markup in sql.sgml, copy.sgml
Neil Conway
entire contents of the subplan into the tuplestore before we can return
any tuples. Instead, the tuplestore holds what we've already read, and
we fetch additional rows from the subplan as needed. Random access to
the previously-read rows works with the tuplestore, and doesn't affect
the state of the partially-read subplan. This is a step towards fixing
the problems with cursors over complex queries --- we don't want to
stick in Materialize nodes if they'll prevent quick startup for a cursor.
a per-query memory context created by CreateExecutorState --- and destroyed
by FreeExecutorState. This provides a final solution to the longstanding
problem of memory leaked by various ExecEndNode calls.
to plan nodes, not vice-versa. All executor state nodes now inherit from
struct PlanState. Copying of plan trees has been simplified by not
storing a list of SubPlans in Plan nodes (eliminating duplicate links).
The executor still needs such a list, but it can build it during
ExecutorStart since it has to scan the plan tree anyway.
No initdb forced since no stored-on-disk structures changed, but you
will need a full recompile because of node-numbering changes.
memory contexts. Currently, only leaks in expressions executed as
quals or projections are handled. Clean up some old dead cruft in
executor while at it --- unused fields in state nodes, that sort of thing.
materialized tupleset is small enough) instead of a temporary relation.
This was something I was thinking of doing anyway for performance, and Jan
says he needs it for TOAST because he doesn't want to cope with toasting
noname relations. With this change, the 'noname table' support in heap.c
is dead code, and I have accordingly removed it. Also clean up 'noname'
plan handling in planner --- nonames are either sort or materialize plans,
and it seems less confusing to handle them separately under those names.
* Buffer refcount cleanup (per my "progress report" to pghackers, 9/22).
* Add links to backend PROC structs to sinval's array of per-backend info,
and use these links for routines that need to check the state of all
backends (rather than the slow, complicated search of the ShmemIndex
hashtable that was used before). Add databaseOID to PROC structs.
* Use this to implement an interlock that prevents DESTROY DATABASE of
a database containing running backends. (It's a little tricky to prevent
a concurrently-starting backend from getting in there, since the new
backend is not able to lock anything at the time it tries to look up
its database in pg_database. My solution is to recheck that the DB is
OK at the end of InitPostgres. It may not be a 100% solution, but it's
a lot better than no interlock at all...)
* In ALTER TABLE RENAME, flush buffers for the relation before doing the
rename of the physical files, to ensure we don't get failures later from
mdblindwrt().
* Update TRUNCATE patch so that it actually compiles against current
sources :-(.
You should do "make clean all" after pulling these changes.