In writeListPage, never take a full-page image of the page, because we
have all the information required to re-initialize in the WAL record
anyway. Before this fix, a full-page image was always generated, unless
full_page_writes=off, because when the page is initialized its LSN is
always 0. In stable-branches, keep the code to restore the backup blocks
if they exist, in case that the WAL is generated with an older minor
version, but in master Assert that there are no full-page images.
In the redo routine, add missing "off++". Otherwise the tuples are added
to the page in reverse order. That happens to be harmless because we
always scan and remove all the tuples together, but it was clearly wrong.
Also, it was masked by the first bug unless full_page_writes=off, because
the page was always restored from a full-page image.
Backpatch to all supported versions.
GIN posting lists are now encoded using varbyte-encoding, which allows them
to fit in much smaller space than the straight ItemPointer array format used
before. The new encoding is used for both the lists stored in-line in entry
tree items, and in posting tree leaf pages.
To maintain backwards-compatibility and keep pg_upgrade working, the code
can still read old-style pages and tuples. Posting tree leaf pages in the
new format are flagged with GIN_COMPRESSED flag, to distinguish old and new
format pages. Likewise, entry tree tuples in the new format have a
GIN_ITUP_COMPRESSED flag set in a bit that was previously unused.
This patch bumps GIN_CURRENT_VERSION from 1 to 2. New indexes created with
version 9.4 will therefore have version number 2 in the metapage, while old
pg_upgraded indexes will have version 1. The code treats them the same, but
it might be come handy in the future, if we want to drop support for the
uncompressed format.
Alexander Korotkov and me. Reviewed by Tomas Vondra and Amit Langote.
Remove use of PageSetTLI() from all page manipulation functions
and adjust README to indicate change in the way we make changes
to pages. Repurpose those bytes into the pd_checksum field and
explain how that works in comments about page header.
Refactoring ahead of actual feature patch which would make use
of the checksum field, arriving later.
Jeff Davis, with comments and doc changes by Simon Riggs
Direction suggested by Robert Haas; many others providing
review comments.
Most of the replay functions for WAL record types that modify more than
one page failed to ensure that those pages were locked correctly to ensure
that concurrent queries could not see inconsistent page states. This is
a hangover from coding decisions made long before Hot Standby was added,
when it was hardly necessary to acquire buffer locks during WAL replay
at all, let alone hold them for carefully-chosen periods.
The key problem was that RestoreBkpBlocks was written to hold lock on each
page restored from a full-page image for only as long as it took to update
that page. This was guaranteed to break any WAL replay function in which
there was any update-ordering constraint between pages, because even if the
nominal order of the pages is the right one, any mixture of full-page and
non-full-page updates in the same record would result in out-of-order
updates. Moreover, it wouldn't work for situations where there's a
requirement to maintain lock on one page while updating another. Failure
to honor an update ordering constraint in this way is thought to be the
cause of bug #7648 from Daniel Farina: what seems to have happened there
is that a btree page being split was rewritten from a full-page image
before the new right sibling page was written, and because lock on the
original page was not maintained it was possible for hot standby queries to
try to traverse the page's right-link to the not-yet-existing sibling page.
To fix, get rid of RestoreBkpBlocks as such, and instead create a new
function RestoreBackupBlock that restores just one full-page image at a
time. This function can be invoked by WAL replay functions at the points
where they would otherwise perform non-full-page updates; in this way, the
physical order of page updates remains the same no matter which pages are
replaced by full-page images. We can then further adjust the logic in
individual replay functions if it is necessary to hold buffer locks
for overlapping periods. A side benefit is that we can simplify the
handling of concurrency conflict resolution by moving that code into the
record-type-specfic functions; there's no more need to contort the code
layout to keep conflict resolution in front of the RestoreBkpBlocks call.
In connection with that, standardize on zero-based numbering rather than
one-based numbering for referencing the full-page images. In HEAD, I
removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are
still there in the header files in previous branches, but are no longer
used by the code.
In addition, fix some other bugs identified in the course of making these
changes:
spgRedoAddNode could fail to update the parent downlink at all, if the
parent tuple is in the same page as either the old or new split tuple and
we're not doing a full-page image: it would get fooled by the LSN having
been advanced already. This would result in permanent index corruption,
not just transient failure of concurrent queries.
Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old
tail page as a candidate for a full-page image; in the worst case this
could result in torn-page corruption.
heap_xlog_freeze() was inconsistent about using a cleanup lock or plain
exclusive lock: it did the former in the normal path but the latter for a
full-page image. A plain exclusive lock seems sufficient, so change to
that.
Also, remove gistRedoPageDeleteRecord(), which has been dead code since
VACUUM FULL was rewritten.
Back-patch to 9.0, where hot standby was introduced. Note however that 9.0
had a significantly different WAL-logging scheme for GIST index updates,
and it doesn't appear possible to make that scheme safe for concurrent hot
standby queries, because it can leave inconsistent states in the index even
between WAL records. Given the lack of complaints from the field, we won't
work too hard on fixing that branch.
Per my recent proposal(s). Null key datums can now be returned by
extractValue and extractQuery functions, and will be stored in the index.
Also, placeholder entries are made for indexable items that are NULL or
contain no keys according to extractValue. This means that the index is
now always complete, having at least one entry for every indexed heap TID,
and so we can get rid of the prohibition on full-index scans. A full-index
scan is implemented much the same way as partial-match scans were already:
we build a bitmap representing all the TIDs found in the index, and then
drive the results off that.
Also, introduce a concept of a "search mode" that can be requested by
extractQuery when the operator requires matching to empty items (this is
just as cheap as matching to a single key) or requires a full index scan
(which is not so cheap, but it sure beats failing or giving wrong answers).
The behavior remains backward compatible for opclasses that don't return
any null keys or request a non-default search mode.
Using these features, we can now make the GIN index opclass for anyarray
behave in a way that matches the actual anyarray operators for &&, <@, @>,
and = ... which it failed to do before in assorted corner cases.
This commit fixes the core GIN code and ginarrayprocs.c, updates the
documentation, and adds some simple regression test cases for the new
behaviors using the array operators. The tsearch and contrib GIN opclass
support functions still need to be looked over and probably fixed.
Another thing I intend to fix separately is that this is pretty inefficient
for cases where more than one scan condition needs a full-index search:
we'll run duplicate GinScanEntrys, each one of which builds a large bitmap.
There is some existing logic to merge duplicate GinScanEntrys but it needs
refactoring to make it work for entries belonging to different scan keys.
Note that most of gin.h has been split out into a new file gin_private.h,
so that gin.h doesn't export anything that's not supposed to be used by GIN
opclasses or the rest of the backend. I did quite a bit of other code
beautification work as well, mostly fixing comments and choosing more
appropriate names for things.
This commit replaces pg_class.relistemp with pg_class.relpersistence;
and also modifies the RangeVar node type to carry relpersistence rather
than istemp. It also removes removes rd_istemp from RelationData and
instead performs the correct computation based on relpersistence.
For clarity, we add three new macros: RelationNeedsWAL(),
RelationUsesLocalBuffers(), and RelationUsesTempNamespace(), so that we
can clarify the purpose of each check that previous depended on
rd_istemp.
This is intended as infrastructure for the upcoming unlogged tables
patch, as well as for future possible work on global temporary tables.
The GIN code has absolutely no business exporting GIN-specific functions
with names as generic as compareItemPointers() or newScanKey(); that's
just trouble waiting to happen. I got annoyed about this again just now
and decided to fix it. This commit ensures that all global symbols
defined in access/gin/ have names including "gin" or "Gin". There were a
couple of cases, like names involving "PostingItem", where arguably the
names were already sufficiently nongeneric; but I figured as long as I was
risking creating merge problems for unapplied GIN patches I might as well
impose a uniform policy.
I didn't touch any static symbol names. There might be some places
where it'd be appropriate to rename some static functions to match
siblings that are exported, but I'll leave that for another time.
The better estimate requires more statistics than we previously stored:
in particular, counts of "entry" versus "data" pages within the index,
as well as knowledge of the number of distinct key values. We collect
this information during initial index build and update it during VACUUM,
storing the info in new fields on the index metapage. No initdb is
required because these fields will read as zeroes in a pre-existing
index, and the new gincostestimate code is coded to behave (reasonably)
sanely if they are zeroes.
Teodor Sigaev, reviewed by Jan Urbanski, Tom Lane, and Itagaki Takahiro.
struct representing a tree entry, rather than being a separately allocated
piece of storage. This API is at least as clean as the old one (if not
more so --- there were some bizarre choices in there) and it permits a
very substantial memory savings, on the order of 2X in ginbulk.c's usage.
Also, fix minor memory leaks in code called by ginEntryInsert, in
particular in ginInsertValue and entryFillRoot, as well as ginEntryInsert
itself. These leaks resulted in the GIN index build context continuing
to bloat even after we'd filled it to maintenance_work_mem and started
to dump data out to the index.
In combination these fixes restore the GIN index build code to honoring
the maintenance_work_mem limit about as well as it did in 8.4. Speed
seems on par with 8.4 too, maybe even a bit faster, for a non-pathological
case in which HEAD was formerly slower.
Back-patch to 9.0 so we don't have a performance regression from 8.4.
several places, but for now only GIN uses it during index creation.
Using self-balanced tree greatly speeds up index creation in corner cases
with preordered data.
tuple size limit. Improve the error message for index-tuple-too-large
so that it includes the actual size, the limit, and the index name.
Sync with the btree occurrences of the same error.
Back-patch to 8.4 because it appears that the out-of-sync problem
is occurring in the field.
Teodor and Tom
In practice these mistakes were always masked when full_page_writes was on,
because XLogInsert would always choose to log the full page, and then
ginRedoInsertListPage wouldn't try to do anything. But with full_page_writes
off a WAL replay failure was certain.
The GIN_INSERT_LISTPAGE record type could probably be eliminated entirely
in favor of using XLOG_HEAP_NEWPAGE, but I refrained from doing that now
since it would have required a significantly more invasive patch.
In passing do a little bit of code cleanup, including making the accounting
for free space on GIN list pages more precise. (This wasn't a bug as the
errors were always in the conservative direction.)
Per report from Simon. Back-patch to 8.4 which contains the identical code.
them from degrading badly when the input is sorted or nearly so. In this
scenario the tree is unbalanced to the point of becoming a mere linked list,
so insertions become O(N^2). The easiest and most safely back-patchable
solution is to stop growing the tree sooner, ie limit the growth of N. We
might later consider a rebalancing tree algorithm, but it's not clear that
the benefit would be worth the cost and complexity. Per report from Sergey
Burladyan and an earlier complaint from Heikki.
Back-patch to 8.2; older versions didn't have GIN indexes.
multiple index entries in a holding area before adding them to the main index
structure. This helps because bulk insert is (usually) significantly faster
than retail insert for GIN.
This patch also removes GIN support for amgettuple-style index scans. The
API defined for amgettuple is difficult to support with fastupdate, and
the previously committed partial-match feature didn't really work with
it either. We might eventually figure a way to put back amgettuple
support, but it won't happen for 8.4.
catversion bumped because of change in GIN's pg_am entry, and because
the format of GIN indexes changed on-disk (there's a metapage now,
and possibly a pending list).
Teodor Sigaev