1
0
mirror of https://github.com/postgres/postgres.git synced 2025-04-21 12:05:57 +03:00

255 Commits

Author SHA1 Message Date
Tom Lane
09b07c2953 Minor performance improvement for SQL-language functions.
Late in the development of commit 0dca5d68d, I added a step to copy
the result tlist we extract from the cached final query, because
I was afraid that that might not last as long as the JunkFilter that
we're passing it off to.  However, that turns out to cost a noticeable
number of cycles, and it's really quite unnecessary because the
JunkFilter will not examine that tlist after it's been created.
(ExecFindJunkAttribute would use it, but we don't use that function
on this JunkFilter.)  Hence, remove the copy step.  For safety,
reset the might-become-dangling jf_targetList pointer to NIL.

In passing, remove DR_sqlfunction.cxt, which we don't use anymore;
it's confusing because it's not entirely clear which context it
ought to point at.
2025-04-17 12:55:58 -04:00
Tom Lane
0f43083d16 functions.c: copy trees from source_list before parse analysis etc.
This is yet another bit of fallout from the fact that backend/parser
(like other code) feels free to scribble on the parse tree it's
handed.  In this case that resulted in modifying the
relatively-short-lived copy in the cached function's source_list.
That would be fine since we only need each source_list tree once
... except that if the parser fails after making some changes,
the function cache entry remains as-is and will still be there
if the user tries to execute the function again.  Then we have
problems because we're feeding a non-pristine tree to the parser.

The most expedient fix is a quick copyObject().  I considered
other answers like somehow marking the cache entry invalid
temporarily, but that would add complexity and I'm not sure
it's worth it.  In typical scenarios we'd only do this once
per function query per session.

Reported-by: Alexander Lakhin <exclusion@gmail.com>
Author: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/6d442183-102c-498a-81d1-eeeb086cdc5a@gmail.com
2025-04-04 18:26:51 -04:00
Tom Lane
dbd437e670 Fix oversight in commit 0dca5d68d.
As coded, fmgr_sql() would get an assertion failure for a SQL function
that has an empty body and is declared to return some type other than
VOID.  Typically you'd never get that far because fmgr_sql_validator()
would reject such a definition (I suspect that's how come I managed to
miss the bug).  But if check_function_bodies is off or the function is
polymorphic, the validation check wouldn't get made.

Reported-by: Alexander Lakhin <exclusion@gmail.com>
Author: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/0fde377a-3870-4d18-946a-ce008ee5bb88@gmail.com
2025-04-03 16:03:12 -04:00
Tom Lane
0dca5d68d7 Change SQL-language functions to use the plan cache.
In the historical implementation of SQL functions (if they don't get
inlined), we built plans for all the contained queries at first call
within an outer query, and then re-used those plans for the duration
of the outer query, and then forgot everything.  This was not ideal,
not least because the plans could not be customized to specific values
of the function's parameters.  Our plancache infrastructure seems
mature enough to be used here.  That will solve both the problem with
not being able to build custom plans and the problem with not being
able to share work across successive outer queries.

Aside from those performance concerns, this change fixes a
longstanding bugaboo with SQL functions: you could not write DDL that
would affect later statements in the same function.  That's mostly
still true with new-style SQL functions, since the results of parse
analysis are baked into the stored query trees (and protected by
dependency records).  But for old-style SQL functions, it will now
work much as it does with PL/pgSQL functions, because we delay parse
analysis and planning of each query until we're ready to run it.
Some edge cases that require replanning are now handled better too;
see for example the new rowsecurity test, where we now detect an RLS
context change that was previously missed.

One other edge-case change that might be worthy of a release note
is that we now insist that a SQL function's result be generated
by the physically-last query within it.  Previously, if the last
original query was deleted by a DO INSTEAD NOTHING rule, we'd be
willing to take the result from the preceding query instead.
This behavior was undocumented except in source-code comments,
and it seems hard to believe that anyone's relying on it.

Along the way to this feature, we needed a few infrastructure changes:

* The plancache can now take either a raw parse tree or an
analyzed-but-not-rewritten Query as the starting point for a
CachedPlanSource.  If given a Query, it is caller's responsibility
that nothing will happen to invalidate that form of the query.
We use this for new-style SQL functions, where what's in pg_proc is
serialized Query(s) and we trust the dependency mechanism to disallow
DDL that would break those.

* The plancache now offers a way to invoke a post-rewrite callback
to examine/modify the rewritten parse tree when it is rebuilding
the parse trees after a cache invalidation.  We need this because
SQL functions sometimes adjust the parse tree to make its output
exactly match the declared result type; if the plan gets rebuilt,
that has to be re-done.

* There is a new backend module utils/cache/funccache.c that
abstracts the idea of caching data about a specific function
usage (a particular function and set of input data types).
The code in it is moved almost verbatim from PL/pgSQL, which
has done that for a long time.  We use that logic now for
SQL-language functions too, and maybe other PLs will have use
for it in the future.

Author: Alexander Pyhalov <a.pyhalov@postgrespro.ru>
Co-authored-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://postgr.es/m/8216639.NyiUUSuA9g@aivenlaptop
2025-04-02 14:06:02 -04:00
Amit Langote
525392d572 Don't lock partitions pruned by initial pruning
Before executing a cached generic plan, AcquireExecutorLocks() in
plancache.c locks all relations in a plan's range table to ensure the
plan is safe for execution. However, this locks runtime-prunable
relations that will later be pruned during "initial" runtime pruning,
introducing unnecessary overhead.

This commit defers locking for such relations to executor startup and
ensures that if the CachedPlan is invalidated due to concurrent DDL
during this window, replanning is triggered. Deferring these locks
avoids unnecessary locking overhead for pruned partitions, resulting
in significant speedup, particularly when many partitions are pruned
during initial runtime pruning.

* Changes to locking when executing generic plans:

AcquireExecutorLocks() now locks only unprunable relations, that is,
those found in PlannedStmt.unprunableRelids (introduced in commit
cbc127917e), to avoid locking runtime-prunable partitions
unnecessarily.  The remaining locks are taken by
ExecDoInitialPruning(), which acquires them only for partitions that
survive pruning.

This deferral does not affect the locks required for permission
checking in InitPlan(), which takes place before initial pruning.
ExecCheckPermissions() now includes an Assert to verify that all
relations undergoing permission checks, none of which can be in the
set of runtime-prunable relations, are properly locked.

* Plan invalidation handling:

Deferring locks introduces a window where prunable relations may be
altered by concurrent DDL, invalidating the plan. A new function,
ExecutorStartCachedPlan(), wraps ExecutorStart() to detect and handle
invalidation caused by deferred locking. If invalidation occurs,
ExecutorStartCachedPlan() updates CachedPlan using the new
UpdateCachedPlan() function and retries execution with the updated
plan. To ensure all code paths that may be affected by this handle
invalidation properly, all callers of ExecutorStart that may execute a
PlannedStmt from a CachedPlan have been updated to use
ExecutorStartCachedPlan() instead.

UpdateCachedPlan() replaces stale plans in CachedPlan.stmt_list. A new
CachedPlan.stmt_context, created as a child of CachedPlan.context,
allows freeing old PlannedStmts while preserving the CachedPlan
structure and its statement list. This ensures that loops over
statements in upstream callers of ExecutorStartCachedPlan() remain
intact.

ExecutorStart() and ExecutorStart_hook implementations now return a
boolean value indicating whether plan initialization succeeded with a
valid PlanState tree in QueryDesc.planstate, or false otherwise, in
which case QueryDesc.planstate is NULL. Hook implementations are
required to call standard_ExecutorStart() at the beginning, and if it
returns false, they should do the same without proceeding.

* Testing:

To verify these changes, the delay_execution module tests scenarios
where cached plans become invalid due to changes in prunable relations
after deferred locks.

* Note to extension authors:

ExecutorStart_hook implementations must verify plan validity after
calling standard_ExecutorStart(), as explained earlier. For example:

    if (prev_ExecutorStart)
        plan_valid = prev_ExecutorStart(queryDesc, eflags);
    else
        plan_valid = standard_ExecutorStart(queryDesc, eflags);

    if (!plan_valid)
        return false;

    <extension-code>

    return true;

Extensions accessing child relations, especially prunable partitions,
via ExecGetRangeTableRelation() must now ensure their RT indexes are
present in es_unpruned_relids (introduced in commit cbc127917e), or
they will encounter an error. This is a strict requirement after this
change, as only relations in that set are locked.

The idea of deferring some locks to executor startup, allowing locks
for prunable partitions to be skipped, was first proposed by Tom Lane.

Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: David Rowley <dgrowleyml@gmail.com> (earlier versions)
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> (earlier versions)
Reviewed-by: Tomas Vondra <tomas@vondra.me>
Reviewed-by: Junwang Zhao <zhjwpku@gmail.com>
Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
2025-02-20 17:09:48 +09:00
Bruce Momjian
50e6eb731d Update copyright for 2025
Backpatch-through: 13
2025-01-01 11:21:55 -05:00
David Rowley
5983a4cffc Introduce CompactAttribute array in TupleDesc, take 2
The new compact_attrs array stores a few select fields from
FormData_pg_attribute in a more compact way, using only 16 bytes per
column instead of the 104 bytes that FormData_pg_attribute uses.  Using
CompactAttribute allows performance-critical operations such as tuple
deformation to be performed without looking at the FormData_pg_attribute
element in TupleDesc which means fewer cacheline accesses.

For some workloads, tuple deformation can be the most CPU intensive part
of processing the query.  Some testing with 16 columns on a table
where the first column is variable length showed around a 10% increase in
transactions per second for an OLAP type query performing aggregation on
the 16th column.  However, in certain cases, the increases were much
higher, up to ~25% on one AMD Zen4 machine.

This also makes pg_attribute.attcacheoff redundant.  A follow-on commit
will remove it, thus shrinking the FormData_pg_attribute struct by 4
bytes.

Author: David Rowley
Reviewed-by: Andres Freund, Victor Yegorov
Discussion: https://postgr.es/m/CAApHDvrBztXP3yx=NKNmo3xwFAFhEdyPnvrDg3=M0RhDs+4vYw@mail.gmail.com
2024-12-20 22:31:26 +13:00
Tom Lane
3eea7a0c97 Simplify executor's determination of whether to use parallelism.
Our parallel-mode code only works when we are executing a query
in full, so ExecutePlan must disable parallel mode when it is
asked to do partial execution.  The previous logic for this
involved passing down a flag (variously named execute_once or
run_once) from callers of ExecutorRun or PortalRun.  This is
overcomplicated, and unsurprisingly some of the callers didn't
get it right, since it requires keeping state that not all of
them have handy; not to mention that the requirements for it were
undocumented.  That led to assertion failures in some corner
cases.  The only state we really need for this is the existing
QueryDesc.already_executed flag, so let's just put all the
responsibility in ExecutePlan.  (It could have been done in
ExecutorRun too, leading to a slightly shorter patch -- but if
there's ever more than one caller of ExecutePlan, it seems better
to have this logic in the subroutine than the callers.)

This makes those ExecutorRun/PortalRun parameters unnecessary.
In master it seems okay to just remove them, returning the
API for those functions to what it was before parallelism.
Such an API break is clearly not okay in stable branches,
but for them we can just leave the parameters in place after
documenting that they do nothing.

Per report from Yugo Nagata, who also reviewed and tested
this patch.  Back-patch to all supported branches.

Discussion: https://postgr.es/m/20241206062549.710dc01cf91224809dd6c0e1@sraoss.co.jp
2024-12-09 14:38:19 -05:00
Peter Eisentraut
7f798aca1d Remove useless casts to (void *)
Many of them just seem to have been copied around for no real reason.
Their presence causes (small) risks of hiding actual type mismatches
or silently discarding qualifiers

Discussion: https://www.postgresql.org/message-id/flat/461ea37c-8b58-43b4-9736-52884e862820@eisentraut.org
2024-11-28 08:27:20 +01:00
Nathan Bossart
cd7ab57532 Ensure cached plans are correctly marked as dependent on role.
If a CTE, subquery, sublink, security invoker view, or coercion
projection references a table with row-level security policies, we
neglected to mark the plan as potentially dependent on which role
is executing it.  This could lead to later executions in the same
session returning or hiding rows that should have been hidden or
returned instead.

Reported-by: Wolfgang Walther
Reviewed-by: Noah Misch
Security: CVE-2024-10976
Backpatch-through: 12
2024-11-11 09:00:00 -06:00
Michael Paquier
c145f321b6 Propagate query IDs of utility statements in functions
For utility statements defined within a function, the query tree is
copied to a PlannedStmt as utility commands do not require planning.
However, the query ID was missing from the information passed down.

This leads to plugins relying on the query ID like pg_stat_statements to
not be able to track utility statements within function calls.  Tests
are added to check this behavior, depending on pg_stat_statements.track.

This is an old bug.  Now, query IDs for utilities are compiled using
their parsed trees rather than the query string since v16
(3db72ebcbe20), leading to less bloat with utilities, so backpatch down
only to this version.

Author: Anthonin Bonnefoy
Discussion: https://postgr.es/m/CAO6_XqrGp-uwBqi3vBPLuRULKkddjC7R5QZCgsFren=8E+m2Sg@mail.gmail.com
Backpatch-through: 16
2024-07-19 10:21:01 +09:00
Dean Rasheed
c649fa24a4 Add RETURNING support to MERGE.
This allows a RETURNING clause to be appended to a MERGE query, to
return values based on each row inserted, updated, or deleted. As with
plain INSERT, UPDATE, and DELETE commands, the returned values are
based on the new contents of the target table for INSERT and UPDATE
actions, and on its old contents for DELETE actions. Values from the
source relation may also be returned.

As with INSERT/UPDATE/DELETE, the output of MERGE ... RETURNING may be
used as the source relation for other operations such as WITH queries
and COPY commands.

Additionally, a special function merge_action() is provided, which
returns 'INSERT', 'UPDATE', or 'DELETE', depending on the action
executed for each row. The merge_action() function can be used
anywhere in the RETURNING list, including in arbitrary expressions and
subqueries, but it is an error to use it anywhere outside of a MERGE
query's RETURNING list.

Dean Rasheed, reviewed by Isaac Morland, Vik Fearing, Alvaro Herrera,
Gurjeet Singh, Jian He, Jeff Davis, Merlin Moncure, Peter Eisentraut,
and Wolfgang Walther.

Discussion: http://postgr.es/m/CAEZATCWePEGQR5LBn-vD6SfeLZafzEm2Qy_L_Oky2=qw2w3Pzg@mail.gmail.com
2024-03-17 13:58:59 +00:00
Tom Lane
6ee3261e9b Fix confusion about the return rowtype of SQL-language procedures.
There is a very ancient hack in check_sql_fn_retval that allows a
single SELECT targetlist entry of composite type to be taken as
supplying all the output columns of a function returning composite.
(This is grotty and fundamentally ambiguous, but it's really hard
to do nested composite-returning functions without it.)

As far as I know, that doesn't cause any problems in ordinary
functions.  It's disastrous for procedures however.  All procedures
that have any output parameters are labeled with prorettype RECORD,
and the CALL code expects it will get back a record with one column
per output parameter, regardless of whether any of those parameters
is composite.  Doing something else leads to an assertion failure
or core dump.

This is simple enough to fix: we just need to not apply that rule
when considering procedures.  However, that requires adding another
argument to check_sql_fn_retval, which at least in principle might be
getting called by external callers.  Therefore, in the back branches
convert check_sql_fn_retval into an ABI-preserving wrapper around a
new function check_sql_fn_retval_ext.

Per report from Yahor Yuzefovich.  This has been broken since we
implemented procedures, so back-patch to all supported branches.

Discussion: https://postgr.es/m/CABz5gWHSjj2df6uG0NRiDhZ_Uz=Y8t0FJP-_SVSsRsnrQT76Gg@mail.gmail.com
2024-03-12 18:16:25 -04:00
Heikki Linnakangas
ab355e3a88 Redefine backend ID to be an index into the proc array
Previously, backend ID was an index into the ProcState array, in the
shared cache invalidation manager (sinvaladt.c). The entry in the
ProcState array was reserved at backend startup by scanning the array
for a free entry, and that was also when the backend got its backend
ID. Things become slightly simpler if we redefine backend ID to be the
index into the PGPROC array, and directly use it also as an index to
the ProcState array. This uses a little more memory, as we reserve a
few extra slots in the ProcState array for aux processes that don't
need them, but the simplicity is worth it.

Aux processes now also have a backend ID. This simplifies the
reservation of BackendStatusArray and ProcSignal slots.

You can now convert a backend ID into an index into the PGPROC array
simply by subtracting 1. We still use 0-based "pgprocnos" in various
places, for indexes into the PGPROC array, but the only difference now
is that backend IDs start at 1 while pgprocnos start at 0. (The next
commmit will get rid of the term "backend ID" altogether and make
everything 0-based.)

There is still a 'backendId' field in PGPROC, now part of 'vxid' which
encapsulates the backend ID and local transaction ID together. It's
needed for prepared xacts. For regular backends, the backendId is
always equal to pgprocno + 1, but for prepared xact PGPROC entries,
it's the ID of the original backend that processed the transaction.

Reviewed-by: Andres Freund, Reid Thompson
Discussion: https://www.postgresql.org/message-id/8171f1aa-496f-46a6-afc3-c46fe7a9b407@iki.fi
2024-03-03 19:37:28 +02:00
Bruce Momjian
29275b1d17 Update copyright for 2024
Reported-by: Michael Paquier

Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz

Backpatch-through: 12
2024-01-03 20:49:05 -05:00
Peter Eisentraut
611806cd72 Add trailing commas to enum definitions
Since C99, there can be a trailing comma after the last value in an
enum definition.  A lot of new code has been introducing this style on
the fly.  Some new patches are now taking an inconsistent approach to
this.  Some add the last comma on the fly if they add a new last
value, some are trying to preserve the existing style in each place,
some are even dropping the last comma if there was one.  We could
nudge this all in a consistent direction if we just add the trailing
commas everywhere once.

I omitted a few places where there was a fixed "last" value that will
always stay last.  I also skipped the header files of libpq and ecpg,
in case people want to use those with older compilers.  There were
also a small number of cases where the enum type wasn't used anywhere
(but the enum values were), which ended up confusing pgindent a bit,
so I left those alone.

Discussion: https://www.postgresql.org/message-id/flat/386f8c45-c8ac-4681-8add-e3b0852c1620%40eisentraut.org
2023-10-26 09:20:54 +02:00
Daniel Gustafsson
d435f15fff Add SysCacheGetAttrNotNull for guaranteed not-null attrs
When extracting an attr from a cached tuple in the syscache with
SysCacheGetAttr the isnull parameter must be checked in case the
attr cannot be NULL.  For cases when this is known beforehand, a
wrapper is introduced which perform the errorhandling internally
on behalf of the caller, invoking an elog in case of a NULL attr.

Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/AD76405E-DB45-46B6-941F-17B1EB3A9076@yesql.se
2023-03-25 22:49:33 +01:00
Bruce Momjian
c8e1ba736b Update copyright for 2023
Backpatch-through: 11
2023-01-02 15:00:37 -05:00
Tom Lane
8b47ccb624 Prevent clobbering of utility statements in SQL function caches.
This is an oversight in commit 7c337b6b5: I apparently didn't think
about the possibility of a SQL function being executed multiple
times within a query.  In that case, functions.c's primitive caching
mechanism allows the same utility parse tree to be presented for
execution more than once.  We have to tell ProcessUtility to make
a working copy of the parse tree, or bad things happen.

Normally I'd add a regression test, but I think the reported crasher
is dependent on some rather random implementation choices that are
nowhere near functions.c, so its usefulness as a long-lived test
feels questionable.  In any case, this fix is clearly correct given
the design choices of 7c337b6b5.

Per bug #17702 from Xin Wen.  Thanks to Daniel Gustafsson for
analysis.  Back-patch to v14 where the faulty commit came in
(before that, the responsibility for copying scribble-able
utility parse trees lay elsewhere).

Discussion: https://postgr.es/m/17702-ad24fdcdd1e9047a@postgresql.org
2022-11-29 11:46:33 -05:00
Tom Lane
309857f9c1 Fix handling of R/W expanded datums that are passed to SQL functions.
fmgr_sql must make expanded-datum arguments read-only, because
it's possible that the function body will pass the argument to
more than one callee function.  If one of those functions takes
the datum's R/W property as license to scribble on it, then later
callees will see an unexpected value, leading to wrong answers.

From a performance standpoint, it'd be nice to skip this in the
common case that the argument value is passed to only one callee.
However, detecting that seems fairly hard, and certainly not
something that I care to attempt in a back-patched bug fix.

Per report from Adam Mackler.  This has been broken since we
invented expanded datums, so back-patch to all supported branches.

Discussion: https://postgr.es/m/WScDU5qfoZ7PB2gXwNqwGGgDPmWzz08VdydcPFLhOwUKZcdWbblbo-0Lku-qhuEiZoXJ82jpiQU4hOjOcrevYEDeoAvz6nR0IU4IHhXnaCA=@mackler.email
Discussion: https://postgr.es/m/187436.1660143060@sss.pgh.pa.us
2022-08-10 13:37:25 -04:00
Peter Eisentraut
503e3833ef Remove useless assertions
We don't need Assert(IsA(foo, String)) right before running
strVal(foo), since strVal() already does the assertion internally (via
castNode()).
2022-07-13 11:43:40 +02:00
Peter Eisentraut
791b1b71da Parse/analyze function renaming
There are three parallel ways to call parse/analyze: with fixed
parameters, with variable parameters, and by supplying your own parser
callback.  Some of the involved functions were confusingly named and
made this API structure more confusing.  This patch renames some
functions to make this clearer:

parse_analyze() -> parse_analyze_fixedparams()
pg_analyze_and_rewrite() -> pg_analyze_and_rewrite_fixedparams()

(Otherwise one might think this variant doesn't accept parameters, but
in fact all three ways accept parameters.)

pg_analyze_and_rewrite_params() -> pg_analyze_and_rewrite_withcb()

(Before, and also when considering pg_analyze_and_rewrite(), one might
think this is the only way to pass parameters.  Moreover, the parser
callback doesn't necessarily need to parse only parameters, it's just
one of the things it could do.)

parse_fixed_parameters() -> setup_parse_fixed_parameters()
parse_variable_parameters() -> setup_parse_variable_parameters()

(These functions don't actually do any parsing, they just set up
callbacks to use during parsing later.)

This patch also adds some const decorations to the fixed-parameters
API, so the distinction from the variable-parameters API is more
clear.

Reviewed-by: Nathan Bossart <bossartn@amazon.com>
Discussion: https://www.postgresql.org/message-id/flat/c67ce276-52b4-0239-dc0e-39875bf81840@enterprisedb.com
2022-03-04 14:50:22 +01:00
Bruce Momjian
27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Tom Lane
7c337b6b52 Centralize the logic for protective copying of utility statements.
In the "simple Query" code path, it's fine for parse analysis or
execution of a utility statement to scribble on the statement's node
tree, since that'll just be thrown away afterwards.  However it's
not fine if the node tree is in the plan cache, as then it'd be
corrupted for subsequent executions.  Up to now we've dealt with
that by having individual utility-statement functions apply
copyObject() if they were going to modify the tree.  But that's
prone to errors of omission.  Bug #17053 from Charles Samborski
shows that CREATE/ALTER DOMAIN didn't get this memo, and can
crash if executed repeatedly from plan cache.

In the back branches, we'll just apply a narrow band-aid for that,
but in HEAD it seems prudent to have a more principled fix that
will close off the possibility of other similar bugs in future.
Hence, let's hoist the responsibility for doing copyObject up into
ProcessUtility from its children, thus ensuring that it happens for
all utility statement types.

Also, modify ProcessUtility's API so that its callers can tell it
whether a copy step is necessary.  It turns out that in all cases,
the immediate caller knows whether the node tree is transient, so
this doesn't involve a huge amount of code thrashing.  In this way,
while we lose a little bit in the execute-from-cache code path due
to sometimes copying node trees that wouldn't be mutated anyway,
we gain something in the simple-Query code path by not copying
throwaway node trees.  Statements that are complex enough to be
expensive to copy are almost certainly ones that would have to be
copied anyway, so the loss in the cache code path shouldn't be much.

(Note that this whole problem applies only to utility statements.
Optimizable statements don't have the issue because we long ago made
the executor treat Plan trees as read-only.  Perhaps someday we will
make utility statement execution act likewise, but I'm not holding
my breath.)

Discussion: https://postgr.es/m/931771.1623893989@sss.pgh.pa.us
Discussion: https://postgr.es/m/17053-3ca3f501bbc212b4@postgresql.org
2021-06-18 11:22:58 -04:00
David Rowley
04539e73fa Use the correct article for abbreviations
We've accumulated quite a mix of instances of "an SQL" and "a SQL" in the
documents.  It would be good to be a bit more consistent with these.

The most recent version of the SQL standard I looked at seems to prefer
"an SQL".  That seems like a good lead to follow, so here we change all
instances of "a SQL" to become "an SQL".  Most instances correctly use
"an SQL" already, so it also makes sense to use the dominant variation in
order to minimise churn.

Additionally, there were some other abbreviations that needed to be
adjusted. FSM, SSPI, SRF and a few others.  Also fix some pronounceable,
abbreviations to use "a" instead of "an".  For example, "a SASL" instead
of "an SASL".

Here I've only adjusted the documents and error messages.  Many others
still exist in source code comments.  Translator hint comments seem to be
the biggest culprit.  It currently does not seem worth the churn to change
these.

Discussion: https://postgr.es/m/CAApHDvpML27UqFXnrYO1MJddsKVMQoiZisPvsAGhKE_tsKXquw%40mail.gmail.com
2021-06-11 13:38:04 +12:00
Tom Lane
e56bce5d43 Reconsider the handling of procedure OUT parameters.
Commit 2453ea142 redefined pg_proc.proargtypes to include the types of
OUT parameters, for procedures only.  While that had some advantages
for implementing the SQL-spec behavior of DROP PROCEDURE, it was pretty
disastrous from a number of other perspectives.  Notably, since the
primary key of pg_proc is name + proargtypes, this made it possible to
have multiple procedures with identical names + input arguments and
differing output argument types.  That would make it impossible to call
any one of the procedures by writing just NULL (or "?", or any other
data-type-free notation) for the output argument(s).  The change also
seems likely to cause grave confusion for client applications that
examine pg_proc and expect the traditional definition of proargtypes.

Hence, revert the definition of proargtypes to what it was, and
undo a number of complications that had been added to support that.

To support the SQL-spec behavior of DROP PROCEDURE, when there are
no argmode markers in the command's parameter list, we perform the
lookup both ways (that is, matching against both proargtypes and
proallargtypes), succeeding if we get just one unique match.
In principle this could result in ambiguous-function failures
that would not happen when using only one of the two rules.
However, overloading of procedure names is thought to be a pretty
rare usage, so this shouldn't cause many problems in practice.
Postgres-specific code such as pg_dump can defend against any
possibility of such failures by being careful to specify argmodes
for all procedure arguments.

This also fixes a few other bugs in the area of CALL statements
with named parameters, and improves the documentation a little.

catversion bump forced because the representation of procedures
with OUT arguments changes.

Discussion: https://postgr.es/m/3742981.1621533210@sss.pgh.pa.us
2021-06-10 17:11:36 -04:00
Tom Lane
1111b2668d Undo decision to allow pg_proc.prosrc to be NULL.
Commit e717a9a18 changed the longstanding rule that prosrc is NOT NULL
because when a SQL-language function is written in SQL-standard style,
we don't currently have anything useful to put there.  This seems a poor
decision though, as it could easily have negative impacts on external
PLs (opening them to crashes they didn't use to have, for instance).
SQL-function-related code can just as easily test "is prosqlbody not
null" as "is prosrc null", so there's no real gain there either.
Hence, revert the NOT NULL marking removal and adjust related logic.

For now, we just put an empty string into prosrc for SQL-standard
functions.  Maybe we'll have a better idea later, although the
history of things like pg_attrdef.adsrc suggests that it's not
easy to maintain a string equivalent of a node tree.

This also adds an assertion that queryDesc->sourceText != NULL
to standard_ExecutorStart.  We'd been silently relying on that
for awhile, so let's make it less silent.

Also fix some overlooked documentation and test cases.

Discussion: https://postgr.es/m/2197698.1617984583@sss.pgh.pa.us
2021-04-15 17:17:20 -04:00
Peter Eisentraut
e717a9a18b SQL-standard function body
This adds support for writing CREATE FUNCTION and CREATE PROCEDURE
statements for language SQL with a function body that conforms to the
SQL standard and is portable to other implementations.

Instead of the PostgreSQL-specific AS $$ string literal $$ syntax,
this allows writing out the SQL statements making up the body
unquoted, either as a single statement:

    CREATE FUNCTION add(a integer, b integer) RETURNS integer
        LANGUAGE SQL
        RETURN a + b;

or as a block

    CREATE PROCEDURE insert_data(a integer, b integer)
    LANGUAGE SQL
    BEGIN ATOMIC
      INSERT INTO tbl VALUES (a);
      INSERT INTO tbl VALUES (b);
    END;

The function body is parsed at function definition time and stored as
expression nodes in a new pg_proc column prosqlbody.  So at run time,
no further parsing is required.

However, this form does not support polymorphic arguments, because
there is no more parse analysis done at call time.

Dependencies between the function and the objects it uses are fully
tracked.

A new RETURN statement is introduced.  This can only be used inside
function bodies.  Internally, it is treated much like a SELECT
statement.

psql needs some new intelligence to keep track of function body
boundaries so that it doesn't send off statements when it sees
semicolons that are inside a function body.

Tested-by: Jaime Casanova <jcasanov@systemguards.com.ec>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/1c11f1eb-f00c-43b7-799d-2d44132c02d7@2ndquadrant.com
2021-04-07 21:47:55 +02:00
Bruce Momjian
ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Alexander Korotkov
6df7a9698b Multirange datatypes
Multiranges are basically sorted arrays of non-overlapping ranges with
set-theoretic operations defined over them.

Since v14, each range type automatically gets a corresponding multirange
datatype.  There are both manual and automatic mechanisms for naming multirange
types.  Once can specify multirange type name using multirange_type_name
attribute in CREATE TYPE.  Otherwise, a multirange type name is generated
automatically.  If the range type name contains "range" then we change that to
"multirange".  Otherwise, we add "_multirange" to the end.

Implementation of multiranges comes with a space-efficient internal
representation format, which evades extra paddings and duplicated storage of
oids.  Altogether this format allows fetching a particular range by its index
in O(n).

Statistic gathering and selectivity estimation are implemented for multiranges.
For this purpose, stored multirange is approximated as union range without gaps.
This field will likely need improvements in the future.

Catversion is bumped.

Discussion: https://postgr.es/m/CALNJ-vSUpQ_Y%3DjXvTxt1VYFztaBSsWVXeF1y6gTYQ4bOiWDLgQ%40mail.gmail.com
Discussion: https://postgr.es/m/a0b8026459d1e6167933be2104a6174e7d40d0ab.camel%40j-davis.com#fe7218c83b08068bfffb0c5293eceda0
Author: Paul Jungwirth, revised by me
Reviewed-by: David Fetter, Corey Huinker, Jeff Davis, Pavel Stehule
Reviewed-by: Alvaro Herrera, Tom Lane, Isaac Morland, David G. Johnston
Reviewed-by: Zhihong Yu, Alexander Korotkov
2020-12-20 07:20:33 +03:00
Tom Lane
c8ab970179 Fix list-munging bug that broke SQL function result coercions.
Since commit 913bbd88d, check_sql_fn_retval() can either insert type
coercion steps in-line in the Query that produces the SQL function's
results, or generate a new top-level Query to perform the coercions,
if modifying the Query's output in-place wouldn't be safe.  However,
it appears that the latter case has never actually worked, because
the code tried to inject the new Query back into the query list it was
passed ... which is not the list that will be used for later processing
when we execute the SQL function "normally" (without inlining it).
So we ended up with no coercion happening at run-time, leading to
wrong results or crashes depending on the datatypes involved.

While the regression tests look like they cover this area well enough,
through a huge bit of bad luck all the test cases that exercise the
separate-Query path were checking either inline-able cases (which
accidentally didn't have the bug) or cases that are no-ops at runtime
(e.g., varchar to text), so that the failure to perform the coercion
wasn't obvious.  The fact that the cases that don't work weren't
allowed at all before v13 probably contributed to not noticing the
problem sooner, too.

To fix, get rid of the separate "flat" list of Query nodes and instead
pass the real two-level list that is going to be used later.  I chose
to make the same change in check_sql_fn_statements(), although that has
no actual bug, just so that we don't need that data structure at all.

This is an API change, as evidenced by the adjustments needed to
callers outside functions.c.  That's a bit scary to be doing in a
released branch, but so far as I can tell from a quick search,
there are no outside callers of these functions (and they are
sufficiently specific to our semantics for SQL-language functions that
it's not apparent why any extension would need to call them).  In any
case, v13 already changed the API of check_sql_fn_retval() compared to
prior branches.

Per report from pinker.  Back-patch to v13 where this code came in.

Discussion: https://postgr.es/m/1603050466566-0.post@n3.nabble.com
2020-10-19 14:33:09 -04:00
Peter Eisentraut
2453ea1422 Support for OUT parameters in procedures
Unlike for functions, OUT parameters for procedures are part of the
signature.  Therefore, they have to be listed in pg_proc.proargtypes
as well as mentioned in ALTER PROCEDURE and DROP PROCEDURE.

Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/2b8490fe-51af-e671-c504-47359dc453c5@2ndquadrant.com
2020-10-05 09:21:43 +02:00
Tom Lane
2d59643dbc Account for collation when coercing the output of a SQL function.
Commit 913bbd88d overlooked that the result of coerce_to_target_type
might need collation fixups.  Per report from Andreas Joseph Krogh.

Discussion: https://postgr.es/m/VisenaEmail.72.37d08ec2b8cb8fb5.17179940cd3@tc7-visena
2020-04-14 17:30:36 -04:00
Fujii Masao
6aba63ef3e Allow the planner-related functions and hook to accept the query string.
This commit adds query_string argument into the planner-related functions
and hook and allows us to pass the query string to them.

Currently there is no user of the query string passed. But the upcoming patch
for the planning counters will add the planning hook function into
pg_stat_statements and the function will need the query string. So this change
will be necessary for that patch.

Also this change is useful for some extensions that want to use the query
string in their planner hook function.

Author: Pascal Legrand, Julien Rouhaud
Reviewed-by: Yoshikazu Imai, Tom Lane, Fujii Masao
Discussion: https://postgr.es/m/CAOBaU_bU1m3_XF5qKYtSj1ua4dxd=FWDyh2SH4rSJAUUfsGmAQ@mail.gmail.com
Discussion: https://postgr.es/m/1583789487074-0.post@n3.nabble.com
2020-03-30 13:51:05 +09:00
Tom Lane
9d9784c840 Remove bogus assertion about polymorphic SQL function result.
It is possible to reach check_sql_fn_retval() with an unresolved
polymorphic rettype, resulting in an assertion failure as demonstrated
by one of the added test cases.  However, the code following that
throws what seems an acceptable error message, so just remove the
Assert and adjust commentary.

While here, I thought it'd be a good idea to provide some parallel
tests of SQL-function and PL/pgSQL-function polymorphism behavior.
Some of these cases are perhaps duplicative of tests elsewhere,
but we hadn't any organized coverage of the topic AFAICS.

Although that assertion's been wrong all along, it won't have any
effect in production builds, so I'm not bothering to back-patch.

Discussion: https://postgr.es/m/21569.1584314271@sss.pgh.pa.us
2020-03-17 14:54:46 -04:00
Alvaro Herrera
2f9661311b
Represent command completion tags as structs
The backend was using strings to represent command tags and doing string
comparisons in multiple places, but that's slow and unhelpful.  Create a
new command list with a supporting structure to use instead; this is
stored in a tag-list-file that can be tailored to specific purposes with
a caller-definable C macro, similar to what we do for WAL resource
managers.  The first first such uses are a new CommandTag enum and a
CommandTagBehavior struct.

Replace numerous occurrences of char *completionTag with a
QueryCompletion struct so that the code no longer stores information
about completed queries in a cstring.  Only at the last moment, in
EndCommand(), does this get converted to a string.

EventTriggerCacheItem no longer holds an array of palloc’d tag strings
in sorted order, but rather just a Bitmapset over the CommandTags.

Author: Mark Dilger, with unsolicited help from Álvaro Herrera
Reviewed-by: John Naylor, Tom Lane
Discussion: https://postgr.es/m/981A9DB4-3F0C-4DA5-88AD-CB9CFF4D6CAD@enterprisedb.com
2020-03-02 18:19:51 -03:00
Robert Haas
2eb34ac369 Fix problems with "read only query" checks, and refactor the code.
Previously, check_xact_readonly() was responsible for determining
which types of queries could not be run in a read-only transaction,
standard_ProcessUtility() was responsibility for prohibiting things
which were allowed in read only transactions but not in recovery, and
utility commands were basically prohibited in bulk in parallel mode by
calls to CommandIsReadOnly() in functions.c and spi.c.  This situation
was confusing and error-prone. Accordingly, move all the checks to a
new function ClassifyUtilityCommandAsReadOnly(), which determines the
degree to which a given statement is read only.

In the old code, check_xact_readonly() inadvertently failed to handle
several statement types that actually should have been prohibited,
specifically T_CreatePolicyStmt, T_AlterPolicyStmt, T_CreateAmStmt,
T_CreateStatsStmt, T_AlterStatsStmt, and T_AlterCollationStmt.  As a
result, thes statements were erroneously allowed in read only
transactions, parallel queries, and standby operation. Generally, they
would fail anyway due to some lower-level error check, but we
shouldn't rely on that.  In the new code structure, future omissions
of this type should cause ClassifyUtilityCommandAsReadOnly() to
complain about an unrecognized node type.

As a fringe benefit, this means we can allow certain types of utility
commands in parallel mode, where it's safe to do so. This allows
ALTER SYSTEM, CALL, DO, CHECKPOINT, COPY FROM, EXPLAIN, and SHOW.
It might be possible to allow additional commands with more work
and thought.

Along the way, document the thinking process behind the current set
of checks, as per discussion especially with Peter Eisentraut. There
is some interest in revising some of these rules, but that seems
like a job for another patch.

Patch by me, reviewed by Tom Lane, Stephen Frost, and Peter
Eisentraut.

Discussion: http://postgr.es/m/CA+TgmoZ_rLqJt5sYkvh+JpQnfX0Y+B2R+qfi820xNih6x-FQOQ@mail.gmail.com
2020-01-16 12:11:31 -05:00
Tom Lane
913bbd88dc Improve the handling of result type coercions in SQL functions.
Use the parser's standard type coercion machinery to convert the
output column(s) of a SQL function's final SELECT or RETURNING
to the type(s) they should have according to the function's declared
result type.  We'll allow any case where an assignment-level
coercion is available.  Previously, we failed unless the required
coercion was a binary-compatible one (and the documentation ignored
this, falsely claiming that the types must match exactly).

Notably, the coercion now accounts for typmods, so that cases where
a SQL function is declared to return a composite type whose columns
are typmod-constrained now behave as one would expect.  Arguably
this aspect is a bug fix, but the overall behavioral change here
seems too large to consider back-patching.

A nice side-effect is that functions can now be inlined in a
few cases where we previously failed to do so because of type
mismatches.

Discussion: https://postgr.es/m/18929.1574895430@sss.pgh.pa.us
2020-01-08 11:07:59 -05:00
Bruce Momjian
7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Tom Lane
5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane
1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Tom Lane
8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane
be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Peter Eisentraut
c6ff0b892c Refactor ParamListInfo initialization
There were six copies of identical nontrivial code.  Put it into a
function.
2019-03-14 13:30:09 +01:00
Andres Freund
a9c35cf85c Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays.  For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.

Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.

Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win.  It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.

Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.

Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.

Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.

This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.

Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
2019-01-26 14:17:52 -08:00
Bruce Momjian
97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Andres Freund
578b229718 Remove WITH OIDS support, change oid catalog column visibility.
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.

This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row.  Neither pg_dump nor COPY included the contents of the
oid column by default.

The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.

WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.

Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
  WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
  issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
  restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
  OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
  plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.

The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.

The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such.  This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.

The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.

Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).

The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.

While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.

Catversion bump, for obvious reasons.

Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-20 16:00:17 -08:00
Andres Freund
1a0586de36 Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.

Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots.  Thus different types of
slots are needed, which requires adapting creators of slots.

The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.

Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.

But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.

Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().

The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.

This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit.  The different types of slots introduced will, for now, still
use the same backing implementation.

While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 22:00:30 -08:00
Andres Freund
763f2edd92 Rejigger materializing and fetching a HeapTuple from a slot.
Previously materializing a slot always returned a HeapTuple. As
current work aims to reduce the reliance on HeapTuples (so other
storage systems can work efficiently), that needs to change. Thus
split the tasks of materializing a slot (i.e. making it independent
from the underlying storage / other memory contexts) from fetching a
HeapTuple from the slot.  For brevity, allow to fetch a HeapTuple from
a slot and materializing the slot at the same time, controlled by a
parameter.

For now some callers of ExecFetchSlotHeapTuple, with materialize =
true, expect that changes to the heap tuple will be reflected in the
underlying slot.  Those places will be adapted in due course, so while
not pretty, that's OK for now.

Also rename ExecFetchSlotTuple to ExecFetchSlotHeapTupleDatum and
ExecFetchSlotTupleDatum to ExecFetchSlotHeapTupleDatum, as it's likely
that future storage methods will need similar methods. There already
is ExecFetchSlotMinimalTuple, so the new names make the naming scheme
more coherent.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 14:31:12 -08:00
Tom Lane
442accc3fe Allow memory contexts to have both fixed and variable ident strings.
Originally, we treated memory context names as potentially variable in
all cases, and therefore always copied them into the context header.
Commit 9fa6f00b1 rethought this a little bit and invented a distinction
between fixed and variable names, skipping the copy step for the former.
But we can make things both simpler and more useful by instead allowing
there to be two parts to a context's identification, a fixed "name" and
an optional, variable "ident".  The name supplied in the context create
call is now required to be a compile-time-constant string in all cases,
as it is never copied but just pointed to.  The "ident" string, if
wanted, is supplied later.  This is needed because typically we want
the ident to be stored inside the context so that it's cleaned up
automatically on context deletion; that means it has to be copied into
the context before we can set the pointer.

The cost of this approach is basically just an additional pointer field
in struct MemoryContextData, which isn't much overhead, and is bought
back entirely in the AllocSet case by not needing a headerSize field
anymore, since we no longer have to cope with variable header length.
In addition, we can simplify the internal interfaces for memory context
creation still further, saving a few cycles there.  And it's no longer
true that a custom identifier disqualifies a context from participating
in aset.c's freelist scheme, so possibly there's some win on that end.

All the places that were using non-compile-time-constant context names
are adjusted to put the variable info into the "ident" instead.  This
allows more effective identification of those contexts in many cases;
for example, subsidary contexts of relcache entries are now identified
by both type (e.g. "index info") and relname, where before you got only
one or the other.  Contexts associated with PL function cache entries
are now identified more fully and uniformly, too.

I also arranged for plancache contexts to use the query source string
as their identifier.  This is basically free for CachedPlanSources, as
they contained a copy of that string already.  We pay an extra pstrdup
to do it for CachedPlans.  That could perhaps be avoided, but it would
make things more fragile (since the CachedPlanSource is sometimes
destroyed first).  I suspect future improvements in error reporting will
require CachedPlans to have a copy of that string anyway, so it's not
clear that it's worth moving mountains to avoid it now.

This also changes the APIs for context statistics routines so that the
context-specific routines no longer assume that output goes straight
to stderr, nor do they know all details of the output format.  This
is useful immediately to reduce code duplication, and it also allows
for external code to do something with stats output that's different
from printing to stderr.

The reason for pushing this now rather than waiting for v12 is that
it rethinks some of the API changes made by commit 9fa6f00b1.  Seems
better for extension authors to endure just one round of API changes
not two.

Discussion: https://postgr.es/m/CAB=Je-FdtmFZ9y9REHD7VsSrnCkiBhsA4mdsLKSPauwXtQBeNA@mail.gmail.com
2018-03-27 16:46:51 -04:00