Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
when we first read the page, rather than checking them one at a time.
This allows us to take and release the buffer content lock just once
per page, instead of once per tuple. Since it's a shared lock the
contention penalty for holding the lock longer shouldn't be too bad.
We can safely do this only when using an MVCC snapshot; else the
assumption that visibility won't change over time is uncool. Therefore
there are now two code paths depending on the snapshot type. I also
made the same change in nodeBitmapHeapscan.c, where it can be done always
because we only support MVCC snapshots for bitmap scans anyway.
Also make some incidental cleanups in the APIs of these functions.
Per a suggestion from Qingqing Zhou.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
http://archives.postgresql.org/pgsql-hackers/2004-10/msg00464.php.
This fix is intended to be permanent: it moves the responsibility for
calling SetBufferCommitInfoNeedsSave() into the tqual.c routines,
eliminating the requirement for callers to test whether t_infomask changed.
Also, tighten validity checking on buffer IDs in bufmgr.c --- several
routines were paranoid about out-of-range shared buffer numbers but not
about out-of-range local ones, which seems a tad pointless.
Remove the 'strategy map' code, which was a large amount of mechanism
that no longer had any use except reverse-mapping from procedure OID to
strategy number. Passing the strategy number to the index AM in the
first place is simpler and faster.
This is a preliminary step in planned support for cross-datatype index
operations. I'm committing it now since the ScanKeyEntryInitialize()
API change touches quite a lot of files, and I want to commit those
changes before the tree drifts under me.
to allow es_snapshot to be set to SnapshotNow rather than a query snapshot.
This solves a bug reported by Wade Klaver, wherein triggers fired as a
result of RI cascade updates could misbehave.
transaction, so as to avoid returning them out of the index AM. Saves
repeated heap_fetch operations on frequently-updated rows. Also detect
queries on unique keys (equality to all columns of a unique index), and
don't bother continuing scan once we have found first match.
Killing is implemented in the btree and hash AMs, but not yet in rtree
or gist, because there isn't an equally convenient place to do it in
those AMs (the outer amgetnext routine can't do it without re-pinning
the index page).
Did some small cleanup on APIs of HeapTupleSatisfies, heap_fetch, and
index_insert to make this a little easier.
key call sites are changed, but most called functions are still oldstyle.
An exception is that the PL managers are updated (so, for example, NULL
handling now behaves as expected in plperl and plpgsql functions).
NOTE initdb is forced due to added column in pg_proc.
Patch by: wieck@sapserv.debis.de (Jan Wieck)
One of the design rules of PostgreSQL is extensibility. And
to follow this rule means (at least for me) that there should
not only be a builtin PL. Instead I would prefer a defined
interface for PL implemetations.
Reply-To: hackers@hub.org, Dan McGuirk <mcguirk@indirect.com>
To: hackers@hub.org
Subject: [HACKERS] tmin writeback optimization
I was doing some profiling of the backend, and noticed that during a certain
benchmark I was running somewhere between 30% and 75% of the backend's CPU
time was being spent in calls to TransactionIdDidCommit() from
HeapTupleSatisfiesNow() or HeapTupleSatisfiesItself() to determine that
changed rows' transactions had in fact been committed even though the rows'
tmin values had not yet been set.
When a query looks at a given row, it needs to figure out whether the
transaction that changed the row has been committed and hence it should pay
attention to the row, or whether on the other hand the transaction is still
in progress or has been aborted and hence the row should be ignored. If
a tmin value is set, it is known definitively that the row's transaction
has been committed. However, if tmin is not set, the transaction
referred to in xmin must be looked up in pg_log, and this is what the
backend was spending a lot of time doing during my benchmark.
So, implementing a method suggested by Vadim, I created the following
patch that, the first time a query finds a committed row whose tmin value
is not set, sets it, and marks the buffer where the row is stored as
dirty. (It works for tmax, too.) This doesn't result in the boost in
real time performance I was hoping for, however it does decrease backend
CPU usage by up to two-thirds in certain situations, so it could be
rather beneficial in high-concurrency settings.