These were introduced by pgindent due to fixe to broken
indentation (c.f. 8255c7a5ee). Previously the mis-indentation of
function prototypes was creatively used to reduce indentation in a few
places.
As that formatting only exists in master and REL_12_STABLE, it seems
better to fix it in both, rather than having some odd indentation in
v12 that somebody might copy for future patches or such.
Author: Andres Freund
Discussion: https://postgr.es/m/20190728013754.jwcbe5nfyt3533vx@alap3.anarazel.de
Backpatch: 12-
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.
Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
This allows the user to create duplicates of existing replication slots,
either logical or physical, and even changing properties such as whether
they are temporary or the output plugin used.
There are multiple uses for this, such as initializing multiple replicas
using the slot for one base backup; when doing investigation of logical
replication issues; and to select a different output plugins.
Author: Masahiko Sawada
Reviewed-by: Michael Paquier, Andres Freund, Petr Jelinek
Discussion: https://postgr.es/m/CAD21AoAm7XX8y_tOPP6j4Nzzch12FvA1wPqiO690RCk+uYVstg@mail.gmail.com
Ability to advance both physical and logical replication slots using a
new user function pg_replication_slot_advance().
For logical advance that means records are consumed as fast as possible
and changes are not given to output plugin for sending. Makes 2nd phase
(after we reached SNAPBUILD_FULL_SNAPSHOT) of replication slot creation
faster, especially when there are big transactions as the reorder buffer
does not have to deal with data changes and does not have to spill to
disk.
Author: Petr Jelinek
Reviewed-by: Simon Riggs
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:
* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
than the expected column 33.
On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list. This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.
There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses. I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Lag tracking is called for each commit, but we introduce
a pacing delay to ensure we don't swamp the lag tracker.
Author: Petr Jelinek, with minor pacing delay code from me
The logical decoding machinery already preserved all the required
catalog tuples, which is sufficient in the course of normal logical
decoding, but did not guarantee that non-catalog tuples were preserved
during computation of the initial snapshot when creating a slot over
the replication protocol.
This could cause a corrupted initial snapshot being exported. The
time window for issues is usually not terribly large, but on a busy
server it's perfectly possible to it hit it. Ongoing decoding is not
affected by this bug.
To avoid increased overhead for the SQL API, only retain additional
tuples when a logical slot is being created over the replication
protocol. To do so this commit changes the signature of
CreateInitDecodingContext(), but it seems unlikely that it's being
used in an extension, so that's probably ok.
In a drive-by fix, fix handling of
ReplicationSlotsComputeRequiredXmin's already_locked argument, which
should only apply to ProcArrayLock, not ReplicationSlotControlLock.
Reported-By: Erik Rijkers
Analyzed-By: Petr Jelinek
Author: Petr Jelinek, heavily editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/9a897b86-46e1-9915-ee4c-da02e4ff6a95@2ndquadrant.com
Backport: 9.4, where logical decoding was introduced.
Adds write_lag, flush_lag and replay_lag cols to pg_stat_replication.
Implements a lag tracker module that reports the lag times based upon
measurements of the time taken for recent WAL to be written, flushed and
replayed and for the sender to hear about it. These times
represent the commit lag that was (or would have been) introduced by each
synchronous commit level, if the remote server was configured as a
synchronous standby. For an asynchronous standby, the replay_lag column
approximates the delay before recent transactions became visible to queries.
If the standby server has entirely caught up with the sending server and
there is no more WAL activity, the most recently measured lag times will
continue to be displayed for a short time and then show NULL.
Physical replication lag tracking is automatic. Logical replication tracking
is possible but is the responsibility of the logical decoding plugin.
Tracking is a private module operating within each walsender individually,
with values reported to shared memory. Module not used outside of walsender.
Design and code is good enough now to commit - kudos to the author.
In many ways a difficult topic, with important and subtle behaviour so this
shoudl be expected to generate discussion and multiple open items: Test now!
Author: Thomas Munro, following designs by Fujii Masao and Simon Riggs
Review: Simon Riggs, Ian Barwick and Craig Ringer
Add functionality for a new subscription to copy the initial data in the
tables and then sync with the ongoing apply process.
For the copying, add a new internal COPY option to have the COPY source
data provided by a callback function. The initial data copy works on
the subscriber by receiving COPY data from the publisher and then
providing it locally into a COPY that writes to the destination table.
A WAL receiver can now execute full SQL commands. This is used here to
obtain information about tables and publications.
Several new options were added to CREATE and ALTER SUBSCRIPTION to
control whether and when initial table syncing happens.
Change pg_dump option --no-create-subscription-slots to
--no-subscription-connect and use the new CREATE SUBSCRIPTION
... NOCONNECT option for that.
Author: Petr Jelinek <petr.jelinek@2ndquadrant.com>
Tested-by: Erik Rijkers <er@xs4all.nl>
When implementing a replication solution ontop of logical decoding, two
related problems exist:
* How to safely keep track of replication progress
* How to change replication behavior, based on the origin of a row;
e.g. to avoid loops in bi-directional replication setups
The solution to these problems, as implemented here, consist out of
three parts:
1) 'replication origins', which identify nodes in a replication setup.
2) 'replication progress tracking', which remembers, for each
replication origin, how far replay has progressed in a efficient and
crash safe manner.
3) The ability to filter out changes performed on the behest of a
replication origin during logical decoding; this allows complex
replication topologies. E.g. by filtering all replayed changes out.
Most of this could also be implemented in "userspace", e.g. by inserting
additional rows contain origin information, but that ends up being much
less efficient and more complicated. We don't want to require various
replication solutions to reimplement logic for this independently. The
infrastructure is intended to be generic enough to be reusable.
This infrastructure also replaces the 'nodeid' infrastructure of commit
timestamps. It is intended to provide all the former capabilities,
except that there's only 2^16 different origins; but now they integrate
with logical decoding. Additionally more functionality is accessible via
SQL. Since the commit timestamp infrastructure has also been introduced
in 9.5 (commit 73c986add) changing the API is not a problem.
For now the number of origins for which the replication progress can be
tracked simultaneously is determined by the max_replication_slots
GUC. That GUC is not a perfect match to configure this, but there
doesn't seem to be sufficient reason to introduce a separate new one.
Bumps both catversion and wal page magic.
Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer
Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer
Discussion: 20150216002155.GI15326@awork2.anarazel.de,
20140923182422.GA15776@alap3.anarazel.de,
20131114172632.GE7522@alap2.anarazel.de
This feature, building on previous commits, allows the write-ahead log
stream to be decoded into a series of logical changes; that is,
inserts, updates, and deletes and the transactions which contain them.
It is capable of handling decoding even across changes to the schema
of the effected tables. The output format is controlled by a
so-called "output plugin"; an example is included. To make use of
this in a real replication system, the output plugin will need to be
modified to produce output in the format appropriate to that system,
and to perform filtering.
Currently, information can be extracted from the logical decoding
system only via SQL; future commits will add the ability to stream
changes via walsender.
Andres Freund, with review and other contributions from many other
people, including Álvaro Herrera, Abhijit Menon-Sen, Peter Gheogegan,
Kevin Grittner, Robert Haas, Heikki Linnakangas, Fujii Masao, Abhijit
Menon-Sen, Michael Paquier, Simon Riggs, Craig Ringer, and Steve
Singer.