For simple views which are automatically updatable, this patch allows
the user to specify what level of checking should be done on records
being inserted or updated. For 'LOCAL CHECK', new tuples are validated
against the conditionals of the view they are being inserted into, while
for 'CASCADED CHECK' the new tuples are validated against the
conditionals for all views involved (from the top down).
This option is part of the SQL specification.
Dean Rasheed, reviewed by Pavel Stehule
This is SQL-standard with a few extensions, namely support for
subqueries and outer references in clause expressions.
catversion bump due to change in Aggref and WindowFunc.
David Fetter, reviewed by Dean Rasheed.
This patch adds the core-system infrastructure needed to support updates
on foreign tables, and extends contrib/postgres_fdw to allow updates
against remote Postgres servers. There's still a great deal of room for
improvement in optimization of remote updates, but at least there's basic
functionality there now.
KaiGai Kohei, reviewed by Alexander Korotkov and Laurenz Albe, and rather
heavily revised by Tom Lane.
This patch introduces two additional lock modes for tuples: "SELECT FOR
KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each
other, in contrast with already existing "SELECT FOR SHARE" and "SELECT
FOR UPDATE". UPDATE commands that do not modify the values stored in
the columns that are part of the key of the tuple now grab a SELECT FOR
NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently
with tuple locks of the FOR KEY SHARE variety.
Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this
means the concurrency improvement applies to them, which is the whole
point of this patch.
The added tuple lock semantics require some rejiggering of the multixact
module, so that the locking level that each transaction is holding can
be stored alongside its Xid. Also, multixacts now need to persist
across server restarts and crashes, because they can now represent not
only tuple locks, but also tuple updates. This means we need more
careful tracking of lifetime of pg_multixact SLRU files; since they now
persist longer, we require more infrastructure to figure out when they
can be removed. pg_upgrade also needs to be careful to copy
pg_multixact files over from the old server to the new, or at least part
of multixact.c state, depending on the versions of the old and new
servers.
Tuple time qualification rules (HeapTupleSatisfies routines) need to be
careful not to consider tuples with the "is multi" infomask bit set as
being only locked; they might need to look up MultiXact values (i.e.
possibly do pg_multixact I/O) to find out the Xid that updated a tuple,
whereas they previously were assured to only use information readily
available from the tuple header. This is considered acceptable, because
the extra I/O would involve cases that would previously cause some
commands to block waiting for concurrent transactions to finish.
Another important change is the fact that locking tuples that have
previously been updated causes the future versions to be marked as
locked, too; this is essential for correctness of foreign key checks.
This causes additional WAL-logging, also (there was previously a single
WAL record for a locked tuple; now there are as many as updated copies
of the tuple there exist.)
With all this in place, contention related to tuples being checked by
foreign key rules should be much reduced.
As a bonus, the old behavior that a subtransaction grabbing a stronger
tuple lock than the parent (sub)transaction held on a given tuple and
later aborting caused the weaker lock to be lost, has been fixed.
Many new spec files were added for isolation tester framework, to ensure
overall behavior is sane. There's probably room for several more tests.
There were several reviewers of this patch; in particular, Noah Misch
and Andres Freund spent considerable time in it. Original idea for the
patch came from Simon Riggs, after a problem report by Joel Jacobson.
Most code is from me, with contributions from Marti Raudsepp, Alexander
Shulgin, Noah Misch and Andres Freund.
This patch was discussed in several pgsql-hackers threads; the most
important start at the following message-ids:
AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com1290721684-sup-3951@alvh.no-ip.org1294953201-sup-2099@alvh.no-ip.org1320343602-sup-2290@alvh.no-ip.org1339690386-sup-8927@alvh.no-ip.org4FE5FF020200002500048A3D@gw.wicourts.gov4FEAB90A0200002500048B7D@gw.wicourts.gov
There are probably other places where this can be used, but for now,
this just makes MergeAppend use it, so that this code will have test
coverage. There is other work in the queue that will use this, as
well.
Abhijit Menon-Sen, reviewed by Andres Freund, Robert Haas, Álvaro
Herrera, Tom Lane, and others.
When a whole-row Var is reading the result of a subquery, we need it to
ignore any "resjunk" columns that the subquery might have evaluated for
GROUP BY or ORDER BY purposes. We've hacked this area before, in commit
68e40998d058c1f6662800a648ff1e1ce5d99cba, but that fix only covered
whole-row Vars of named composite types, not those of RECORD type; and it
was mighty klugy anyway, since it just assumed without checking that any
extra columns in the result must be resjunk. A proper fix requires getting
hold of the subquery's targetlist so we can actually see which columns are
resjunk (whereupon we can use a JunkFilter to get rid of them). So bite
the bullet and add some infrastructure to make that possible.
Per report from Andrew Dunstan and additional testing by Merlin Moncure.
Back-patch to all supported branches. In 8.3, also back-patch commit
292176a118da6979e5d368a4baf27f26896c99a5, which for some reason I had
not done at the time, but it's a prerequisite for this change.
Repeated execution of an uncorrelated ARRAY_SUBLINK sub-select (which
I think can only happen if the sub-select is embedded in a larger,
correlated subquery) would leak memory for the duration of the query,
due to not reclaiming the array generated in the previous execution.
Per bug #6698 from Armando Miraglia. Diagnosis and fix idea by Heikki,
patch itself by me.
This has been like this all along, so back-patch to all supported versions.
Making this operation look like a utility statement seems generally a good
idea, and particularly so in light of the desire to provide command
triggers for utility statements. The original choice of representing it as
SELECT with an IntoClause appendage had metastasized into rather a lot of
places, unfortunately, so that this patch is a great deal more complicated
than one might at first expect.
In particular, keeping EXPLAIN working for SELECT INTO and CREATE TABLE AS
subcommands required restructuring some EXPLAIN-related APIs. Add-on code
that calls ExplainOnePlan or ExplainOneUtility, or uses
ExplainOneQuery_hook, will need adjustment.
Also, the cases PREPARE ... SELECT INTO and CREATE RULE ... SELECT INTO,
which formerly were accepted though undocumented, are no longer accepted.
The PREPARE case can be replaced with use of CREATE TABLE AS EXECUTE.
The CREATE RULE case doesn't seem to have much real-world use (since the
rule would work only once before failing with "table already exists"),
so we'll not bother with that one.
Both SELECT INTO and CREATE TABLE AS still return a command tag of
"SELECT nnnn". There was some discussion of returning "CREATE TABLE nnnn",
but for the moment backwards compatibility wins the day.
Andres Freund and Tom Lane
This patch creates an API whereby a btree index opclass can optionally
provide non-SQL-callable support functions for sorting. In the initial
patch, we only use this to provide a directly-callable comparator function,
which can be invoked with a bit less overhead than the traditional
SQL-callable comparator. While that should be of value in itself, the real
reason for doing this is to provide a datatype-extensible framework for
more aggressive optimizations, as in Peter Geoghegan's recent work.
Robert Haas and Tom Lane
This commit changes index-only scans so that data is read directly from the
index tuple without first generating a faux heap tuple. The only immediate
benefit is that indexes on system columns (such as OID) can be used in
index-only scans, but this is necessary infrastructure if we are ever to
support index-only scans on expression indexes. The executor is now ready
for that, though the planner still needs substantial work to recognize
the possibility.
To do this, Vars in index-only plan nodes have to refer to index columns
not heap columns. I introduced a new special varno, INDEX_VAR, to mark
such Vars to avoid confusion. (In passing, this commit renames the two
existing special varnos to OUTER_VAR and INNER_VAR.) This allows
ruleutils.c to handle them with logic similar to what we use for subplan
reference Vars.
Since index-only scans are now fundamentally different from regular
indexscans so far as their expression subtrees are concerned, I also chose
to change them to have their own plan node type (and hence, their own
executor source file).
When a btree index contains all columns required by the query, and the
visibility map shows that all tuples on a target heap page are
visible-to-all, we don't need to fetch that heap page. This patch depends
on the previous patches that made the visibility map reliable.
There's a fair amount left to do here, notably trying to figure out a less
chintzy way of estimating the cost of an index-only scan, but the core
functionality seems ready to commit.
Robert Haas and Ibrar Ahmed, with some previous work by Heikki Linnakangas.
This provides information about the numbers of tuples that were visited
but not returned by table scans, as well as the numbers of join tuples
that were considered and discarded within a join plan node.
There is still some discussion going on about the best way to report counts
for outer-join situations, but I think most of what's in the patch would
not change if we revise that, so I'm going to go ahead and commit it as-is.
Documentation changes to follow (they weren't in the submitted patch
either).
Marko Tiikkaja, reviewed by Marc Cousin, somewhat revised by Tom
Due to tuple-slot mismanagement, evaluation of WHEN conditions for AFTER
ROW UPDATE triggers could crash if there had been a BEFORE ROW trigger
fired for the same update. Fix by not trying to overload the use of
estate->es_trig_tuple_slot. Per report from Yoran Heling.
Back-patch to 9.0, when trigger WHEN conditions were introduced.
Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
The originally committed patch for modifying CTEs didn't interact well
with EXPLAIN, as noted by myself, and also had corner-case problems with
triggers, as noted by Dean Rasheed. Those problems show it is really not
practical for ExecutorEnd to call any user-defined code; so split the
cleanup duties out into a new function ExecutorFinish, which must be called
between the last ExecutorRun call and ExecutorEnd. Some Asserts have been
added to these functions to help verify correct usage.
It is no longer necessary for callers of the executor to call
AfterTriggerBeginQuery/AfterTriggerEndQuery for themselves, as this is now
done by ExecutorStart/ExecutorFinish respectively. If you really need to
suppress that and do it for yourself, pass EXEC_FLAG_SKIP_TRIGGERS to
ExecutorStart.
Also, refactor portal commit processing to allow for the possibility that
PortalDrop will invoke user-defined code. I think this is not actually
necessary just yet, since the portal-execution-strategy logic forces any
non-pure-SELECT query to be run to completion before we will consider
committing. But it seems like good future-proofing.
This patch implements data-modifying WITH queries according to the
semantics that the updates all happen with the same command counter value,
and in an unspecified order. Therefore one WITH clause can't see the
effects of another, nor can the outer query see the effects other than
through the RETURNING values. And attempts to do conflicting updates will
have unpredictable results. We'll need to document all that.
This commit just fixes the code; documentation updates are waiting on
author.
Marko Tiikkaja and Hitoshi Harada
This commit provides the core code and documentation needed. A contrib
module test case will follow shortly.
Shigeru Hanada, Jan Urbanski, Heikki Linnakangas
Flattening of subquery range tables during setrefs.c could lead to the
rangetable indexes in PlanRowMark nodes not matching up with the column
names previously assigned to the corresponding resjunk ctid (resp. tableoid
or wholerow) columns. Typical symptom would be either a "cannot extract
system attribute from virtual tuple" error or an Assert failure. This
wasn't a problem before 9.0 because we didn't support FOR UPDATE below the
top query level, and so the final flattening could never renumber an RTE
that was relevant to FOR UPDATE. Fix by using a plan-tree-wide unique
number for each PlanRowMark to label the associated resjunk columns, so
that the number need not change during flattening.
Per report from David Johnston (though I'm darned if I can see how this got
past initial testing of the relevant code). Back-patch to 9.0.
In an inherited UPDATE/DELETE, each target table has its own subplan,
because it might have a column set different from other targets. This
means that the resjunk columns we add to support EvalPlanQual might be
at different physical column numbers in each subplan. The EvalPlanQual
rewrite I did for 9.0 failed to account for this, resulting in possible
misbehavior or even crashes during concurrent updates to the same row,
as seen in a recent report from Gordon Shannon. Revise the data structure
so that we track resjunk column numbers separately for each subplan.
I also chose to move responsibility for identifying the physical column
numbers back to executor startup, instead of assuming that numbers derived
during preprocess_targetlist would stay valid throughout subsequent
massaging of the plan. That's a bit slower, so we might want to consider
undoing it someday; but it would complicate the patch considerably and
didn't seem justifiable in a bug fix that has to be back-patched to 9.0.
This is advantageous first because it allows us to hash the smaller table
regardless of the outer-join type, and second because hash join can be more
flexible than merge join in dealing with arbitrary join quals in a FULL
join. For merge join all the join quals have to be mergejoinable, but hash
join will work so long as there's at least one hashjoinable qual --- the
others can be any condition. (This is true essentially because we don't
keep per-inner-tuple match flags in merge join, while hash join can do so.)
To do this, we need a has-it-been-matched flag for each tuple in the
hashtable, not just one for the current outer tuple. The key idea that
makes this practical is that we can store the match flag in the tuple's
infomask, since there are lots of bits there that are of no interest for a
MinimalTuple. So we aren't increasing the size of the hashtable at all for
the feature.
To write this without turning the hash code into even more of a pile of
spaghetti than it already was, I rewrote ExecHashJoin in a state-machine
style, similar to ExecMergeJoin. Other than that decision, it was pretty
straightforward.
This is a heavily revised version of builtin_knngist_core-0.9. The
ordering operators are no longer mixed in with actual quals, which would
have confused not only humans but significant parts of the planner.
Instead, ordering operators are carried separately throughout planning and
execution.
Since the API for ambeginscan and amrescan functions had to be changed
anyway, this commit takes the opportunity to rationalize that a bit.
RelationGetIndexScan no longer forces a premature index_rescan call;
instead, callers of index_beginscan must call index_rescan too. Aside from
making the AM-side initialization logic a bit less peculiar, this has the
advantage that we do not make a useless extra am_rescan call when there are
runtime key values. AMs formerly could not assume that the key values
passed to amrescan were actually valid; now they can.
Teodor Sigaev and Tom Lane
and related routines.
We already had a redundant FunctionCallInfoData struct in FuncExprState,
but were using that copy only in set-returning-function cases, to avoid
keeping function evaluation state in the expression tree for the benefit
of plpgsql's "simple expression" logic. But of course that didn't work
anyway. Given the recent fixes in plpgsql there is no need to have two
separate behaviors here. Getting rid of the local FunctionCallInfoData
structs should make things a little faster (because we don't need to do
InitFunctionCallInfoData each time), and it also makes for a noticeable
reduction in stack space consumption during recursive calls.
This patch eliminates the former need to sort the output of an Append scan
when an ordered scan of an inheritance tree is wanted. This should be
particularly useful for fast-start cases such as queries with LIMIT.
Original patch by Greg Stark, with further hacking by Hans-Jurgen Schonig,
Robert Haas, and Tom Lane.
a pass-by-reference datatype with a nontrivial projection step.
We were using the same memory context for the projection operation as for
the temporary context used by the hashtable routines in execGrouping.c.
However, the hashtable routines feel free to reset their temp context at
any time, which'd lead to destroying input data that was still needed.
Report and diagnosis by Tao Ma.
Back-patch to 8.1, where the problem was introduced by the changes that
allowed us to work with "virtual" tuples instead of materializing intermediate
tuple values everywhere. The earlier code looks quite similar, but it doesn't
suffer the problem because the data gets copied into another context as a
result of having to materialize ExecProject's output tuple.
This patch allows the frame to start from CURRENT ROW (in either RANGE or
ROWS mode), and it also adds support for ROWS n PRECEDING and ROWS n FOLLOWING
start and end points. (RANGE value PRECEDING/FOLLOWING isn't there yet ---
the grammar works, but that's all.)
Hitoshi Harada, reviewed by Pavel Stehule
peculiar variant of UNION ALL, and so wouldn't likely get written directly
as-is, it's possible for it to arise as a result of simplification of
less-obviously-silly queries. In particular, now that we can do flattening
of subqueries that have constant outputs and are underneath an outer join,
it's possible for the case to result from simplification of queries of the
type exhibited in bug #5263. Back-patch to 8.4 to avoid a functionality
regression for this type of query.
8.2beta but never carried out. This avoids repetitive tests of whether the
argument is of scalar or composite type. Also, be a bit more paranoid about
composite arguments in some places where we previously weren't checking.
This patch also removes buffer-usage statistics from the track_counts
output, since this (or the global server statistics) is deemed to be a better
interface to this information.
Itagaki Takahiro, reviewed by Euler Taveira de Oliveira.
support any indexable commutative operator, not just equality. Two rows
violate the exclusion constraint if "row1.col OP row2.col" is TRUE for
each of the columns in the constraint.
Jeff Davis, reviewed by Robert Haas
checked to determine whether the trigger should be fired.
For BEFORE triggers this is mostly a matter of spec compliance; but for AFTER
triggers it can provide a noticeable performance improvement, since queuing of
a deferred trigger event and re-fetching of the row(s) at end of statement can
be short-circuited if the trigger does not need to be fired.
Takahiro Itagaki, reviewed by KaiGai Kohei.
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
execMain.c and into a new plan node type LockRows. Like the recent change
to put table updating into a ModifyTable plan node, this increases planning
flexibility by allowing the operations to occur below the top level of the
plan tree. It's necessary in any case to restore the previous behavior of
having FOR UPDATE locking occur before ModifyTable does.
This partially refactors EvalPlanQual to allow multiple rows-under-test
to be inserted into the EPQ machinery before starting an EPQ test query.
That isn't sufficient to fix EPQ's general bogosity in the face of plans
that return multiple rows per test row, though. Since this patch is
mostly about getting some plan node infrastructure in place and not about
fixing ten-year-old bugs, I will leave EPQ improvements for another day.
Another behavioral change that we could now think about is doing FOR UPDATE
before LIMIT, but that too seems like it should be treated as a followon
patch.
They are now handled by a new plan node type called ModifyTable, which is
placed at the top of the plan tree. In itself this change doesn't do much,
except perhaps make the handling of RETURNING lists and inherited UPDATEs a
tad less klugy. But it is necessary preparation for the intended extension of
allowing RETURNING queries inside WITH.
Marko Tiikkaja
TupleTableSlot nodes. This eliminates the need to count in advance
how many Slots will be needed, which seems more than worth the small
increase in the amount of palloc traffic during executor startup.
The ExecCountSlots infrastructure is now all dead code, but I'll remove it
in a separate commit for clarity.
Per a comment from Robert Haas.
values before they get passed to the index access method. This avoids
repeated detoastings that will otherwise ensue as the comparison value
is examined by various index support functions. We have seen a couple of
reports of cases where repeated detoastings result in an order-of-magnitude
slowdown, so it seems worth adding a bit of extra logic to prevent this.
I had previously proposed trying to avoid duplicate detoastings in general,
but this fix takes care of what seems the most important case in practice
with very little effort or risk.
Back-patch to 8.4 so that the PostGIS folk won't have to wait a year to
have this fix in a production release. (The issue exists further back,
of course, but the code's diverged enough to make backpatching further a
higher-risk action. Also it appears that the possible gains may be limited
in prior releases because of different handling of lossy operators.)