1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-02 09:02:37 +03:00

pgindent run for 8.2.

This commit is contained in:
Bruce Momjian
2006-10-04 00:30:14 +00:00
parent 451e419e98
commit f99a569a2e
522 changed files with 21297 additions and 17170 deletions

View File

@ -7,7 +7,7 @@
* Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/access/nbtree.h,v 1.104 2006/08/24 01:18:34 tgl Exp $
* $PostgreSQL: pgsql/src/include/access/nbtree.h,v 1.105 2006/10/04 00:30:07 momjian Exp $
*
*-------------------------------------------------------------------------
*/
@ -35,10 +35,10 @@ typedef uint16 BTCycleId;
* and status. If the page is deleted, we replace the level with the
* next-transaction-ID value indicating when it is safe to reclaim the page.
*
* We also store a "vacuum cycle ID". When a page is split while VACUUM is
* We also store a "vacuum cycle ID". When a page is split while VACUUM is
* processing the index, a nonzero value associated with the VACUUM run is
* stored into both halves of the split page. (If VACUUM is not running,
* both pages receive zero cycleids.) This allows VACUUM to detect whether
* stored into both halves of the split page. (If VACUUM is not running,
* both pages receive zero cycleids.) This allows VACUUM to detect whether
* a page was split since it started, with a small probability of false match
* if the page was last split some exact multiple of 65536 VACUUMs ago.
* Also, during a split, the BTP_SPLIT_END flag is cleared in the left
@ -71,7 +71,7 @@ typedef BTPageOpaqueData *BTPageOpaque;
#define BTP_META (1 << 3) /* meta-page */
#define BTP_HALF_DEAD (1 << 4) /* empty, but still in tree */
#define BTP_SPLIT_END (1 << 5) /* rightmost page of split group */
#define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DELETEd tuples */
#define BTP_HAS_GARBAGE (1 << 6) /* page has LP_DELETEd tuples */
/*
@ -140,7 +140,7 @@ typedef struct BTMetaPageData
( (i1).ip_blkid.bi_hi == (i2).ip_blkid.bi_hi && \
(i1).ip_blkid.bi_lo == (i2).ip_blkid.bi_lo && \
(i1).ip_posid == (i2).ip_posid )
#define BTEntrySame(i1, i2) \
#define BTEntrySame(i1, i2) \
BTTidSame((i1)->t_tid, (i2)->t_tid)
@ -203,7 +203,7 @@ typedef struct BTMetaPageData
#define XLOG_BTREE_SPLIT_R_ROOT 0x60 /* as above, new item on right */
#define XLOG_BTREE_DELETE 0x70 /* delete leaf index tuple */
#define XLOG_BTREE_DELETE_PAGE 0x80 /* delete an entire page */
#define XLOG_BTREE_DELETE_PAGE_META 0x90 /* same, plus update metapage */
#define XLOG_BTREE_DELETE_PAGE_META 0x90 /* same, plus update metapage */
#define XLOG_BTREE_NEWROOT 0xA0 /* new root page */
/*
@ -368,17 +368,17 @@ typedef BTStackData *BTStack;
* BTScanOpaqueData is the btree-private state needed for an indexscan.
* This consists of preprocessed scan keys (see _bt_preprocess_keys() for
* details of the preprocessing), information about the current location
* of the scan, and information about the marked location, if any. (We use
* of the scan, and information about the marked location, if any. (We use
* BTScanPosData to represent the data needed for each of current and marked
* locations.) In addition we can remember some known-killed index entries
* locations.) In addition we can remember some known-killed index entries
* that must be marked before we can move off the current page.
*
* Index scans work a page at a time: we pin and read-lock the page, identify
* all the matching items on the page and save them in BTScanPosData, then
* release the read-lock while returning the items to the caller for
* processing. This approach minimizes lock/unlock traffic. Note that we
* processing. This approach minimizes lock/unlock traffic. Note that we
* keep the pin on the index page until the caller is done with all the items
* (this is needed for VACUUM synchronization, see nbtree/README). When we
* (this is needed for VACUUM synchronization, see nbtree/README). When we
* are ready to step to the next page, if the caller has told us any of the
* items were killed, we re-lock the page to mark them killed, then unlock.
* Finally we drop the pin and step to the next page in the appropriate
@ -420,7 +420,7 @@ typedef struct BTScanPosData
int lastItem; /* last valid index in items[] */
int itemIndex; /* current index in items[] */
BTScanPosItem items[MaxIndexTuplesPerPage]; /* MUST BE LAST */
BTScanPosItem items[MaxIndexTuplesPerPage]; /* MUST BE LAST */
} BTScanPosData;
typedef BTScanPosData *BTScanPos;
@ -439,11 +439,11 @@ typedef struct BTScanOpaqueData
int numKilled; /* number of currently stored items */
/*
* If the marked position is on the same page as current position,
* we don't use markPos, but just keep the marked itemIndex in
* markItemIndex (all the rest of currPos is valid for the mark position).
* Hence, to determine if there is a mark, first look at markItemIndex,
* then at markPos.
* If the marked position is on the same page as current position, we
* don't use markPos, but just keep the marked itemIndex in markItemIndex
* (all the rest of currPos is valid for the mark position). Hence, to
* determine if there is a mark, first look at markItemIndex, then at
* markPos.
*/
int markItemIndex; /* itemIndex, or -1 if not valid */
@ -457,8 +457,8 @@ typedef BTScanOpaqueData *BTScanOpaque;
/*
* We use these private sk_flags bits in preprocessed scan keys
*/
#define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */
#define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */
#define SK_BT_REQFWD 0x00010000 /* required to continue forward scan */
#define SK_BT_REQBKWD 0x00020000 /* required to continue backward scan */
/*
@ -528,8 +528,8 @@ extern void _bt_freeskey(ScanKey skey);
extern void _bt_freestack(BTStack stack);
extern void _bt_preprocess_keys(IndexScanDesc scan);
extern bool _bt_checkkeys(IndexScanDesc scan,
Page page, OffsetNumber offnum,
ScanDirection dir, bool *continuescan);
Page page, OffsetNumber offnum,
ScanDirection dir, bool *continuescan);
extern void _bt_killitems(IndexScanDesc scan, bool haveLock);
extern BTCycleId _bt_vacuum_cycleid(Relation rel);
extern BTCycleId _bt_start_vacuum(Relation rel);