mirror of
https://github.com/postgres/postgres.git
synced 2025-08-27 07:42:10 +03:00
Assume that we have rint().
Windows has this since _MSC_VER >= 1200, and so do all other live platforms according to the buildfarm, so remove the configure probe and src/port/ substitution. This is part of a series of commits to get rid of no-longer-relevant configure checks and dead src/port/ code. I'm committing them separately to make it easier to back out individual changes if they prove less portable than I expect. Discussion: https://postgr.es/m/15379.1582221614@sss.pgh.pa.us
This commit is contained in:
@@ -1,97 +0,0 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* rint.c
|
||||
* rint() implementation
|
||||
*
|
||||
* By Pedro Gimeno Fortea, donated to the public domain
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* src/port/rint.c
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include "c.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
/*
|
||||
* Round to nearest integer, with halfway cases going to the nearest even.
|
||||
*/
|
||||
double
|
||||
rint(double x)
|
||||
{
|
||||
double x_orig;
|
||||
double r;
|
||||
|
||||
/* Per POSIX, NaNs must be returned unchanged. */
|
||||
if (isnan(x))
|
||||
return x;
|
||||
|
||||
if (x <= 0.0)
|
||||
{
|
||||
/* Both positive and negative zero should be returned unchanged. */
|
||||
if (x == 0.0)
|
||||
return x;
|
||||
|
||||
/*
|
||||
* Subtracting 0.5 from a number very close to -0.5 can round to
|
||||
* exactly -1.0, producing incorrect results, so we take the opposite
|
||||
* approach: add 0.5 to the negative number, so that it goes closer to
|
||||
* zero (or at most to +0.5, which is dealt with next), avoiding the
|
||||
* precision issue.
|
||||
*/
|
||||
x_orig = x;
|
||||
x += 0.5;
|
||||
|
||||
/*
|
||||
* Be careful to return minus zero when input+0.5 >= 0, as that's what
|
||||
* rint() should return with negative input.
|
||||
*/
|
||||
if (x >= 0.0)
|
||||
return -0.0;
|
||||
|
||||
/*
|
||||
* For very big numbers the input may have no decimals. That case is
|
||||
* detected by testing x+0.5 == x+1.0; if that happens, the input is
|
||||
* returned unchanged. This also covers the case of minus infinity.
|
||||
*/
|
||||
if (x == x_orig + 1.0)
|
||||
return x_orig;
|
||||
|
||||
/* Otherwise produce a rounded estimate. */
|
||||
r = floor(x);
|
||||
|
||||
/*
|
||||
* If the rounding did not produce exactly input+0.5 then we're done.
|
||||
*/
|
||||
if (r != x)
|
||||
return r;
|
||||
|
||||
/*
|
||||
* The original fractional part was exactly 0.5 (since
|
||||
* floor(input+0.5) == input+0.5). We need to round to nearest even.
|
||||
* Dividing input+0.5 by 2, taking the floor and multiplying by 2
|
||||
* yields the closest even number. This part assumes that division by
|
||||
* 2 is exact, which should be OK because underflow is impossible
|
||||
* here: x is an integer.
|
||||
*/
|
||||
return floor(x * 0.5) * 2.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* The positive case is similar but with signs inverted and using
|
||||
* ceil() instead of floor().
|
||||
*/
|
||||
x_orig = x;
|
||||
x -= 0.5;
|
||||
if (x <= 0.0)
|
||||
return 0.0;
|
||||
if (x == x_orig - 1.0)
|
||||
return x_orig;
|
||||
r = ceil(x);
|
||||
if (r != x)
|
||||
return r;
|
||||
return ceil(x * 0.5) * 2.0;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user