mirror of
https://github.com/postgres/postgres.git
synced 2025-06-27 23:21:58 +03:00
Major planner/optimizer revision: get rid of PathOrder node type,
store all ordering information in pathkeys lists (which are now lists of lists of PathKeyItem nodes, not just lists of lists of vars). This was a big win --- the code is smaller and IMHO more understandable than it was, even though it handles more cases. I believe the node changes will not force an initdb for anyone; planner nodes don't show up in stored rules.
This commit is contained in:
@ -7,7 +7,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinpath.c,v 1.44 1999/08/09 03:16:43 tgl Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/joinpath.c,v 1.45 1999/08/16 02:17:51 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -22,20 +22,26 @@
|
||||
#include "optimizer/cost.h"
|
||||
#include "optimizer/pathnode.h"
|
||||
#include "optimizer/paths.h"
|
||||
#include "optimizer/restrictinfo.h"
|
||||
#include "parser/parsetree.h"
|
||||
#include "utils/lsyscache.h"
|
||||
|
||||
static Path *best_innerjoin(List *join_paths, List *outer_relid);
|
||||
static List *sort_inner_and_outer(RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel,
|
||||
List *mergeinfo_list);
|
||||
static List *match_unsorted_outer(RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel,
|
||||
List *outerpath_list, Path *cheapest_inner, Path *best_innerjoin,
|
||||
List *mergeinfo_list);
|
||||
static List *match_unsorted_inner(RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel,
|
||||
List *innerpath_list, List *mergeinfo_list);
|
||||
static List *sort_inner_and_outer(RelOptInfo *joinrel,
|
||||
RelOptInfo *outerrel,
|
||||
RelOptInfo *innerrel,
|
||||
List *mergeclause_list);
|
||||
static List *match_unsorted_outer(RelOptInfo *joinrel, RelOptInfo *outerrel,
|
||||
RelOptInfo *innerrel, List *outerpath_list,
|
||||
Path *cheapest_inner, Path *best_innerjoin,
|
||||
List *mergeclause_list);
|
||||
static List *match_unsorted_inner(RelOptInfo *joinrel, RelOptInfo *outerrel,
|
||||
RelOptInfo *innerrel, List *innerpath_list,
|
||||
List *mergeclause_list);
|
||||
static List *hash_inner_and_outer(Query *root, RelOptInfo *joinrel,
|
||||
RelOptInfo *outerrel, RelOptInfo *innerrel);
|
||||
static Cost estimate_disbursion(Query *root, Var *var);
|
||||
static List *select_mergejoin_clauses(List *restrictinfo_list);
|
||||
|
||||
/*
|
||||
* update_rels_pathlist_for_joins
|
||||
@ -43,19 +49,10 @@ static Cost estimate_disbursion(Query *root, Var *var);
|
||||
* relations in the list 'joinrels.' Each unique path will be included
|
||||
* in the join relation's 'pathlist' field.
|
||||
*
|
||||
* In postgres, n-way joins are handled left-only(permuting clauseless
|
||||
* joins doesn't usually win much).
|
||||
*
|
||||
* if BushyPlanFlag is true, bushy tree plans will be generated
|
||||
*
|
||||
* 'joinrels' is the list of relation entries to be joined
|
||||
*
|
||||
* Modifies the pathlist field of each joinrel node to contain
|
||||
* the unique join paths.
|
||||
* If bushy trees are considered, may modify the relid field of the
|
||||
* join rel nodes to flatten the lists.
|
||||
*
|
||||
* It does a destructive modification.
|
||||
*/
|
||||
void
|
||||
update_rels_pathlist_for_joins(Query *root, List *joinrels)
|
||||
@ -70,8 +67,8 @@ update_rels_pathlist_for_joins(Query *root, List *joinrels)
|
||||
RelOptInfo *innerrel;
|
||||
RelOptInfo *outerrel;
|
||||
Path *bestinnerjoin;
|
||||
List *pathlist = NIL;
|
||||
List *mergeinfo_list = NIL;
|
||||
List *pathlist;
|
||||
List *mergeclause_list = NIL;
|
||||
|
||||
/*
|
||||
* On entry, joinrel->relids is a list of two sublists of relids,
|
||||
@ -98,24 +95,26 @@ update_rels_pathlist_for_joins(Query *root, List *joinrels)
|
||||
get_join_rel(root, outerrelids);
|
||||
|
||||
/*
|
||||
* Get the best inner join for match_unsorted_outer.
|
||||
* Get the best inner join for match_unsorted_outer().
|
||||
*/
|
||||
bestinnerjoin = best_innerjoin(innerrel->innerjoin, outerrel->relids);
|
||||
|
||||
/*
|
||||
* Find potential mergejoin clauses.
|
||||
*/
|
||||
if (_enable_mergejoin_)
|
||||
mergeinfo_list = group_clauses_by_order(joinrel->restrictinfo,
|
||||
innerrel->relids);
|
||||
mergeclause_list = select_mergejoin_clauses(joinrel->restrictinfo);
|
||||
|
||||
/*
|
||||
* 1. Consider mergejoin paths where both relations must be
|
||||
* explicitly sorted.
|
||||
*/
|
||||
pathlist = sort_inner_and_outer(joinrel, outerrel,
|
||||
innerrel, mergeinfo_list);
|
||||
innerrel, mergeclause_list);
|
||||
|
||||
/*
|
||||
* 2. Consider paths where the outer relation need not be
|
||||
* explicitly sorted. This may include either nestloops and
|
||||
* explicitly sorted. This includes both nestloops and
|
||||
* mergejoins where the outer path is already ordered.
|
||||
*/
|
||||
pathlist = add_pathlist(joinrel, pathlist,
|
||||
@ -123,21 +122,20 @@ update_rels_pathlist_for_joins(Query *root, List *joinrels)
|
||||
outerrel,
|
||||
innerrel,
|
||||
outerrel->pathlist,
|
||||
innerrel->cheapestpath,
|
||||
innerrel->cheapestpath,
|
||||
bestinnerjoin,
|
||||
mergeinfo_list));
|
||||
mergeclause_list));
|
||||
|
||||
/*
|
||||
* 3. Consider paths where the inner relation need not be
|
||||
* explicitly sorted. This may include nestloops and mergejoins
|
||||
* the actual nestloop nodes were constructed in
|
||||
* (match_unsorted_outer).
|
||||
* explicitly sorted. This includes mergejoins only
|
||||
* (nestloops were already built in match_unsorted_outer).
|
||||
*/
|
||||
pathlist = add_pathlist(joinrel, pathlist,
|
||||
match_unsorted_inner(joinrel, outerrel,
|
||||
innerrel,
|
||||
innerrel->pathlist,
|
||||
mergeinfo_list));
|
||||
mergeclause_list));
|
||||
|
||||
/*
|
||||
* 4. Consider paths where both outer and inner relations must be
|
||||
@ -176,11 +174,13 @@ best_innerjoin(List *join_paths, Relids outer_relids)
|
||||
{
|
||||
Path *path = (Path *) lfirst(join_path);
|
||||
|
||||
/* path->joinid is the set of base rels that must be part of
|
||||
Assert(IsA(path, IndexPath));
|
||||
|
||||
/* path->joinrelids is the set of base rels that must be part of
|
||||
* outer_relids in order to use this inner path, because those
|
||||
* rels are used in the index join quals of this inner path.
|
||||
*/
|
||||
if (is_subset(path->joinid, outer_relids) &&
|
||||
if (is_subset(((IndexPath *) path)->joinrelids, outer_relids) &&
|
||||
(cheapest == NULL ||
|
||||
path_is_cheaper(path, cheapest)))
|
||||
cheapest = path;
|
||||
@ -196,8 +196,8 @@ best_innerjoin(List *join_paths, Relids outer_relids)
|
||||
* 'joinrel' is the join relation
|
||||
* 'outerrel' is the outer join relation
|
||||
* 'innerrel' is the inner join relation
|
||||
* 'mergeinfo_list' is a list of nodes containing info on(mergejoinable)
|
||||
* clauses for joining the relations
|
||||
* 'mergeclause_list' is a list of RestrictInfo nodes for available
|
||||
* mergejoin clauses between these two relations
|
||||
*
|
||||
* Returns a list of mergejoin paths.
|
||||
*/
|
||||
@ -205,32 +205,59 @@ static List *
|
||||
sort_inner_and_outer(RelOptInfo *joinrel,
|
||||
RelOptInfo *outerrel,
|
||||
RelOptInfo *innerrel,
|
||||
List *mergeinfo_list)
|
||||
List *mergeclause_list)
|
||||
{
|
||||
List *ms_list = NIL;
|
||||
MergeInfo *xmergeinfo = (MergeInfo *) NULL;
|
||||
MergePath *temp_node = (MergePath *) NULL;
|
||||
List *path_list = NIL;
|
||||
List *i;
|
||||
List *outerkeys = NIL;
|
||||
List *innerkeys = NIL;
|
||||
List *merge_pathkeys = NIL;
|
||||
|
||||
foreach(i, mergeinfo_list)
|
||||
/*
|
||||
* Each possible ordering of the available mergejoin clauses will
|
||||
* generate a differently-sorted result path at essentially the
|
||||
* same cost. We have no basis for choosing one over another at
|
||||
* this level of joining, but some sort orders may be more useful
|
||||
* than others for higher-level mergejoins. Generating a path here
|
||||
* for *every* permutation of mergejoin clauses doesn't seem like
|
||||
* a winning strategy, however; the cost in planning time is too high.
|
||||
*
|
||||
* For now, we generate one path for each mergejoin clause, listing that
|
||||
* clause first and the rest in random order. This should allow at least
|
||||
* a one-clause mergejoin without re-sorting against any other possible
|
||||
* mergejoin partner path. But if we've not guessed the right ordering
|
||||
* of secondary clauses, we may end up evaluating clauses as qpquals when
|
||||
* they could have been done as mergeclauses. We need to figure out a
|
||||
* better way. (Two possible approaches: look at all the relevant index
|
||||
* relations to suggest plausible sort orders, or make just one output
|
||||
* path and somehow mark it as having a sort-order that can be rearranged
|
||||
* freely.)
|
||||
*/
|
||||
foreach(i, mergeclause_list)
|
||||
{
|
||||
xmergeinfo = (MergeInfo *) lfirst(i);
|
||||
RestrictInfo *restrictinfo = lfirst(i);
|
||||
List *curclause_list;
|
||||
List *outerkeys;
|
||||
List *innerkeys;
|
||||
List *merge_pathkeys;
|
||||
MergePath *path_node;
|
||||
|
||||
outerkeys = make_pathkeys_from_joinkeys(xmergeinfo->jmethod.jmkeys,
|
||||
outerrel->targetlist,
|
||||
OUTER);
|
||||
|
||||
innerkeys = make_pathkeys_from_joinkeys(xmergeinfo->jmethod.jmkeys,
|
||||
innerrel->targetlist,
|
||||
INNER);
|
||||
|
||||
merge_pathkeys = new_join_pathkeys(outerkeys, joinrel->targetlist,
|
||||
xmergeinfo->jmethod.clauses);
|
||||
|
||||
temp_node = create_mergejoin_path(joinrel,
|
||||
/* Make a mergeclause list with this guy first. */
|
||||
curclause_list = lcons(restrictinfo,
|
||||
lremove(restrictinfo,
|
||||
listCopy(mergeclause_list)));
|
||||
/* Build sort pathkeys for both sides.
|
||||
*
|
||||
* Note: it's possible that the cheapest path will already be
|
||||
* sorted properly --- create_mergejoin_path will detect that case
|
||||
* and suppress an explicit sort step.
|
||||
*/
|
||||
outerkeys = make_pathkeys_for_mergeclauses(curclause_list,
|
||||
outerrel->targetlist);
|
||||
innerkeys = make_pathkeys_for_mergeclauses(curclause_list,
|
||||
innerrel->targetlist);
|
||||
/* Build pathkeys representing output sort order. */
|
||||
merge_pathkeys = build_join_pathkeys(outerkeys, joinrel->targetlist,
|
||||
curclause_list);
|
||||
/* And now we can make the path. */
|
||||
path_node = create_mergejoin_path(joinrel,
|
||||
outerrel->size,
|
||||
innerrel->size,
|
||||
outerrel->width,
|
||||
@ -238,40 +265,50 @@ sort_inner_and_outer(RelOptInfo *joinrel,
|
||||
(Path *) outerrel->cheapestpath,
|
||||
(Path *) innerrel->cheapestpath,
|
||||
merge_pathkeys,
|
||||
xmergeinfo->m_ordering,
|
||||
xmergeinfo->jmethod.clauses,
|
||||
get_actual_clauses(curclause_list),
|
||||
outerkeys,
|
||||
innerkeys);
|
||||
|
||||
ms_list = lappend(ms_list, temp_node);
|
||||
path_list = lappend(path_list, path_node);
|
||||
}
|
||||
return ms_list;
|
||||
return path_list;
|
||||
}
|
||||
|
||||
/*
|
||||
* match_unsorted_outer
|
||||
* Creates possible join paths for processing a single join relation
|
||||
* 'joinrel' by employing either iterative substitution or
|
||||
* mergejoining on each of its possible outer paths(assuming that the
|
||||
* outer relation need not be explicitly sorted).
|
||||
* mergejoining on each of its possible outer paths (considering
|
||||
* only outer paths that are already ordered well enough for merging).
|
||||
*
|
||||
* 1. The inner path is the cheapest available inner path.
|
||||
* 2. Mergejoin wherever possible. Mergejoin are considered if there
|
||||
* are mergejoinable join clauses between the outer and inner join
|
||||
* relations such that the outer path is keyed on the variables
|
||||
* appearing in the clauses. The corresponding inner merge path is
|
||||
* either a path whose keys match those of the outer path(if such a
|
||||
* path is available) or an explicit sort on the appropriate inner
|
||||
* join keys, whichever is cheaper.
|
||||
* We always generate a nestloop path for each available outer path.
|
||||
* If an indexscan inner path exists that is compatible with this outer rel
|
||||
* and cheaper than the cheapest general-purpose inner path, then we use
|
||||
* the indexscan inner path; else we use the cheapest general-purpose inner.
|
||||
*
|
||||
* We also consider mergejoins if mergejoin clauses are available. We have
|
||||
* two ways to generate the inner path for a mergejoin: use the cheapest
|
||||
* inner path (sorting it if it's not suitably ordered already), or using an
|
||||
* inner path that is already suitably ordered for the merge. If the
|
||||
* cheapest inner path is suitably ordered, then by definition it's the one
|
||||
* to use. Otherwise, we look for ordered paths that are cheaper than the
|
||||
* cheapest inner + sort costs. If we have several mergeclauses, it could be
|
||||
* that there is no inner path (or only a very expensive one) for the full
|
||||
* list of mergeclauses, but better paths exist if we truncate the
|
||||
* mergeclause list (thereby discarding some sort key requirements). So, we
|
||||
* consider truncations of the mergeclause list as well as the full list.
|
||||
* In any case, we find the cheapest suitable path and generate a single
|
||||
* output mergejoin path. (Since all the possible mergejoins will have
|
||||
* identical output pathkeys, there is no need to keep any but the cheapest.)
|
||||
*
|
||||
* 'joinrel' is the join relation
|
||||
* 'outerrel' is the outer join relation
|
||||
* 'innerrel' is the inner join relation
|
||||
* 'outerpath_list' is the list of possible outer paths
|
||||
* 'cheapest_inner' is the cheapest inner path
|
||||
* 'best_innerjoin' is the best inner index path(if any)
|
||||
* 'mergeinfo_list' is a list of nodes containing info on mergejoinable
|
||||
* clauses
|
||||
* 'best_innerjoin' is the best inner index path (if any)
|
||||
* 'mergeclause_list' is a list of RestrictInfo nodes for available
|
||||
* mergejoin clauses between these two relations
|
||||
*
|
||||
* Returns a list of possible join path nodes.
|
||||
*/
|
||||
@ -282,139 +319,139 @@ match_unsorted_outer(RelOptInfo *joinrel,
|
||||
List *outerpath_list,
|
||||
Path *cheapest_inner,
|
||||
Path *best_innerjoin,
|
||||
List *mergeinfo_list)
|
||||
List *mergeclause_list)
|
||||
{
|
||||
Path *outerpath = (Path *) NULL;
|
||||
List *jp_list = NIL;
|
||||
List *temp_node = NIL;
|
||||
List *merge_pathkeys = NIL;
|
||||
Path *nestinnerpath = (Path *) NULL;
|
||||
List *paths = NIL;
|
||||
List *i = NIL;
|
||||
PathOrder *outerpath_ordering = NULL;
|
||||
List *path_list = NIL;
|
||||
Path *nestinnerpath;
|
||||
List *i;
|
||||
|
||||
/*
|
||||
* We only use the best innerjoin indexpath if it is cheaper
|
||||
* than the cheapest general-purpose inner path.
|
||||
*/
|
||||
if (best_innerjoin &&
|
||||
path_is_cheaper(best_innerjoin, cheapest_inner))
|
||||
nestinnerpath = best_innerjoin;
|
||||
else
|
||||
nestinnerpath = cheapest_inner;
|
||||
|
||||
foreach(i, outerpath_list)
|
||||
{
|
||||
List *clauses = NIL;
|
||||
List *matchedJoinKeys = NIL;
|
||||
List *matchedJoinClauses = NIL;
|
||||
MergeInfo *xmergeinfo = NULL;
|
||||
Path *outerpath = (Path *) lfirst(i);
|
||||
List *mergeclauses;
|
||||
List *merge_pathkeys;
|
||||
List *innersortkeys;
|
||||
Path *mergeinnerpath;
|
||||
int mergeclausecount;
|
||||
|
||||
outerpath = (Path *) lfirst(i);
|
||||
/* Look for useful mergeclauses (if any) */
|
||||
mergeclauses = find_mergeclauses_for_pathkeys(outerpath->pathkeys,
|
||||
mergeclause_list);
|
||||
/*
|
||||
* The result will have this sort order (even if it is implemented
|
||||
* as a nestloop, and even if some of the mergeclauses are implemented
|
||||
* by qpquals rather than as true mergeclauses):
|
||||
*/
|
||||
merge_pathkeys = build_join_pathkeys(outerpath->pathkeys,
|
||||
joinrel->targetlist,
|
||||
mergeclauses);
|
||||
|
||||
outerpath_ordering = outerpath->pathorder;
|
||||
/* Always consider a nestloop join with this outer and best inner. */
|
||||
path_list = lappend(path_list,
|
||||
create_nestloop_path(joinrel,
|
||||
outerrel,
|
||||
outerpath,
|
||||
nestinnerpath,
|
||||
merge_pathkeys));
|
||||
|
||||
if (outerpath_ordering)
|
||||
xmergeinfo = match_order_mergeinfo(outerpath_ordering,
|
||||
mergeinfo_list);
|
||||
/* Done with this outer path if no chance for a mergejoin */
|
||||
if (mergeclauses == NIL)
|
||||
continue;
|
||||
|
||||
if (xmergeinfo)
|
||||
clauses = xmergeinfo->jmethod.clauses;
|
||||
/* Compute the required ordering of the inner path */
|
||||
innersortkeys = make_pathkeys_for_mergeclauses(mergeclauses,
|
||||
innerrel->targetlist);
|
||||
|
||||
if (clauses)
|
||||
/* Set up on the assumption that we will use the cheapest_inner */
|
||||
mergeinnerpath = cheapest_inner;
|
||||
mergeclausecount = length(mergeclauses);
|
||||
|
||||
/* If the cheapest_inner doesn't need to be sorted, it is the winner
|
||||
* by definition.
|
||||
*/
|
||||
if (pathkeys_contained_in(innersortkeys,
|
||||
cheapest_inner->pathkeys))
|
||||
{
|
||||
List *jmkeys = xmergeinfo->jmethod.jmkeys;
|
||||
|
||||
order_joinkeys_by_pathkeys(outerpath->pathkeys,
|
||||
jmkeys,
|
||||
clauses,
|
||||
OUTER,
|
||||
&matchedJoinKeys,
|
||||
&matchedJoinClauses);
|
||||
merge_pathkeys = new_join_pathkeys(outerpath->pathkeys,
|
||||
joinrel->targetlist, clauses);
|
||||
/* cheapest_inner is the winner */
|
||||
innersortkeys = NIL; /* we do not need to sort it... */
|
||||
}
|
||||
else
|
||||
merge_pathkeys = outerpath->pathkeys;
|
||||
|
||||
if (best_innerjoin &&
|
||||
path_is_cheaper(best_innerjoin, cheapest_inner))
|
||||
nestinnerpath = best_innerjoin;
|
||||
else
|
||||
nestinnerpath = cheapest_inner;
|
||||
|
||||
paths = lcons(create_nestloop_path(joinrel,
|
||||
outerrel,
|
||||
outerpath,
|
||||
nestinnerpath,
|
||||
merge_pathkeys),
|
||||
NIL);
|
||||
|
||||
if (clauses && matchedJoinKeys)
|
||||
{
|
||||
bool path_is_cheaper_than_sort;
|
||||
List *varkeys = NIL;
|
||||
Path *mergeinnerpath = get_cheapest_path_for_joinkeys(
|
||||
matchedJoinKeys,
|
||||
outerpath_ordering,
|
||||
innerrel->pathlist,
|
||||
INNER);
|
||||
/* look for a presorted path that's cheaper */
|
||||
List *trialsortkeys = listCopy(innersortkeys);
|
||||
Cost cheapest_cost;
|
||||
int clausecount;
|
||||
|
||||
/* Should we use the mergeinner, or sort the cheapest inner? */
|
||||
path_is_cheaper_than_sort = (bool) (mergeinnerpath &&
|
||||
(mergeinnerpath->path_cost <
|
||||
(cheapest_inner->path_cost +
|
||||
cost_sort(matchedJoinKeys, innerrel->size,
|
||||
innerrel->width))));
|
||||
if (!path_is_cheaper_than_sort)
|
||||
cheapest_cost = cheapest_inner->path_cost +
|
||||
cost_sort(innersortkeys, innerrel->size, innerrel->width);
|
||||
|
||||
for (clausecount = mergeclausecount;
|
||||
clausecount > 0;
|
||||
clausecount--)
|
||||
{
|
||||
varkeys = make_pathkeys_from_joinkeys(matchedJoinKeys,
|
||||
innerrel->targetlist,
|
||||
INNER);
|
||||
Path *trialinnerpath;
|
||||
|
||||
/* Look for an inner path ordered well enough to merge with
|
||||
* the first 'clausecount' mergeclauses. NB: trialsortkeys
|
||||
* is modified destructively, which is why we made a copy...
|
||||
*/
|
||||
trialinnerpath =
|
||||
get_cheapest_path_for_pathkeys(innerrel->pathlist,
|
||||
ltruncate(clausecount,
|
||||
trialsortkeys));
|
||||
if (trialinnerpath != NULL &&
|
||||
trialinnerpath->path_cost < cheapest_cost)
|
||||
{
|
||||
/* Found a cheaper (or even-cheaper) sorted path */
|
||||
cheapest_cost = trialinnerpath->path_cost;
|
||||
mergeinnerpath = trialinnerpath;
|
||||
mergeclausecount = clausecount;
|
||||
innersortkeys = NIL; /* we will not need to sort it... */
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Keep track of the cost of the outer path used with this
|
||||
* ordered inner path for later processing in
|
||||
* (match_unsorted_inner), since it isn't a sort and thus
|
||||
* wouldn't otherwise be considered.
|
||||
*/
|
||||
if (path_is_cheaper_than_sort)
|
||||
mergeinnerpath->outerjoincost = outerpath->path_cost;
|
||||
else
|
||||
mergeinnerpath = cheapest_inner;
|
||||
|
||||
temp_node = lcons(create_mergejoin_path(joinrel,
|
||||
outerrel->size,
|
||||
innerrel->size,
|
||||
outerrel->width,
|
||||
innerrel->width,
|
||||
outerpath,
|
||||
mergeinnerpath,
|
||||
merge_pathkeys,
|
||||
xmergeinfo->m_ordering,
|
||||
matchedJoinClauses,
|
||||
NIL,
|
||||
varkeys),
|
||||
paths);
|
||||
}
|
||||
else
|
||||
temp_node = paths;
|
||||
jp_list = nconc(jp_list, temp_node);
|
||||
|
||||
/* Finally, we can build the mergejoin path */
|
||||
mergeclauses = ltruncate(mergeclausecount,
|
||||
get_actual_clauses(mergeclauses));
|
||||
path_list = lappend(path_list,
|
||||
create_mergejoin_path(joinrel,
|
||||
outerrel->size,
|
||||
innerrel->size,
|
||||
outerrel->width,
|
||||
innerrel->width,
|
||||
outerpath,
|
||||
mergeinnerpath,
|
||||
merge_pathkeys,
|
||||
mergeclauses,
|
||||
NIL,
|
||||
innersortkeys));
|
||||
}
|
||||
return jp_list;
|
||||
|
||||
return path_list;
|
||||
}
|
||||
|
||||
/*
|
||||
* match_unsorted_inner
|
||||
* Find the cheapest ordered join path for a given(ordered, unsorted)
|
||||
* inner join path.
|
||||
*
|
||||
* Scans through each path available on an inner join relation and tries
|
||||
* matching its ordering keys against those of mergejoin clauses.
|
||||
* If 1. an appropriately_ordered inner path and matching mergeclause are
|
||||
* found, and
|
||||
* 2. sorting the cheapest outer path is cheaper than using an ordered
|
||||
* but unsorted outer path(as was considered in
|
||||
* (match_unsorted_outer)), then this merge path is considered.
|
||||
* Generate mergejoin paths that use an explicit sort of the outer path
|
||||
* with an already-ordered inner path.
|
||||
*
|
||||
* 'joinrel' is the join result relation
|
||||
* 'outerrel' is the outer join relation
|
||||
* 'innerrel' is the inner join relation
|
||||
* 'innerpath_list' is the list of possible inner join paths
|
||||
* 'mergeinfo_list' is a list of nodes containing info on mergejoinable
|
||||
* clauses
|
||||
* 'mergeclause_list' is a list of RestrictInfo nodes for available
|
||||
* mergejoin clauses between these two relations
|
||||
*
|
||||
* Returns a list of possible merge paths.
|
||||
*/
|
||||
@ -423,78 +460,74 @@ match_unsorted_inner(RelOptInfo *joinrel,
|
||||
RelOptInfo *outerrel,
|
||||
RelOptInfo *innerrel,
|
||||
List *innerpath_list,
|
||||
List *mergeinfo_list)
|
||||
List *mergeclause_list)
|
||||
{
|
||||
List *mp_list = NIL;
|
||||
List *path_list = NIL;
|
||||
List *i;
|
||||
|
||||
foreach(i, innerpath_list)
|
||||
{
|
||||
Path *innerpath = (Path *) lfirst(i);
|
||||
PathOrder *innerpath_ordering = innerpath->pathorder;
|
||||
MergeInfo *xmergeinfo = (MergeInfo *) NULL;
|
||||
List *clauses = NIL;
|
||||
List *matchedJoinKeys = NIL;
|
||||
List *matchedJoinClauses = NIL;
|
||||
List *mergeclauses;
|
||||
|
||||
if (innerpath_ordering)
|
||||
xmergeinfo = match_order_mergeinfo(innerpath_ordering,
|
||||
mergeinfo_list);
|
||||
/* Look for useful mergeclauses (if any) */
|
||||
mergeclauses = find_mergeclauses_for_pathkeys(innerpath->pathkeys,
|
||||
mergeclause_list);
|
||||
|
||||
if (xmergeinfo)
|
||||
clauses = ((JoinMethod *) xmergeinfo)->clauses;
|
||||
|
||||
if (clauses)
|
||||
if (mergeclauses)
|
||||
{
|
||||
List *jmkeys = xmergeinfo->jmethod.jmkeys;
|
||||
List *outersortkeys;
|
||||
Path *mergeouterpath;
|
||||
List *merge_pathkeys;
|
||||
|
||||
order_joinkeys_by_pathkeys(innerpath->pathkeys,
|
||||
jmkeys,
|
||||
clauses,
|
||||
INNER,
|
||||
&matchedJoinKeys,
|
||||
&matchedJoinClauses);
|
||||
}
|
||||
/* Compute the required ordering of the outer path */
|
||||
outersortkeys =
|
||||
make_pathkeys_for_mergeclauses(mergeclauses,
|
||||
outerrel->targetlist);
|
||||
|
||||
/*
|
||||
* (match_unsorted_outer) if it is applicable. 'OuterJoinCost was
|
||||
* set above in
|
||||
*/
|
||||
if (clauses && matchedJoinKeys)
|
||||
{
|
||||
Cost temp1;
|
||||
/* Look for an outer path already ordered well enough to merge */
|
||||
mergeouterpath =
|
||||
get_cheapest_path_for_pathkeys(outerrel->pathlist,
|
||||
outersortkeys);
|
||||
|
||||
temp1 = outerrel->cheapestpath->path_cost +
|
||||
cost_sort(matchedJoinKeys, outerrel->size, outerrel->width);
|
||||
|
||||
if (innerpath->outerjoincost <= 0 /* unset? */
|
||||
|| innerpath->outerjoincost > temp1)
|
||||
/* Should we use the mergeouter, or sort the cheapest outer? */
|
||||
if (mergeouterpath != NULL &&
|
||||
mergeouterpath->path_cost <=
|
||||
(outerrel->cheapestpath->path_cost +
|
||||
cost_sort(outersortkeys, outerrel->size, outerrel->width)))
|
||||
{
|
||||
List *outerkeys = make_pathkeys_from_joinkeys(matchedJoinKeys,
|
||||
outerrel->targetlist,
|
||||
OUTER);
|
||||
List *merge_pathkeys = new_join_pathkeys(outerkeys,
|
||||
joinrel->targetlist,
|
||||
clauses);
|
||||
|
||||
mp_list = lappend(mp_list,
|
||||
create_mergejoin_path(joinrel,
|
||||
outerrel->size,
|
||||
innerrel->size,
|
||||
outerrel->width,
|
||||
innerrel->width,
|
||||
(Path *) outerrel->cheapestpath,
|
||||
innerpath,
|
||||
merge_pathkeys,
|
||||
xmergeinfo->m_ordering,
|
||||
matchedJoinClauses,
|
||||
outerkeys,
|
||||
NIL));
|
||||
/* Use mergeouterpath */
|
||||
outersortkeys = NIL; /* no explicit sort step */
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Use outerrel->cheapestpath, with the outersortkeys */
|
||||
mergeouterpath = outerrel->cheapestpath;
|
||||
}
|
||||
|
||||
/* Compute pathkeys the result will have */
|
||||
merge_pathkeys = build_join_pathkeys(
|
||||
outersortkeys ? outersortkeys : mergeouterpath->pathkeys,
|
||||
joinrel->targetlist,
|
||||
mergeclauses);
|
||||
|
||||
mergeclauses = get_actual_clauses(mergeclauses);
|
||||
path_list = lappend(path_list,
|
||||
create_mergejoin_path(joinrel,
|
||||
outerrel->size,
|
||||
innerrel->size,
|
||||
outerrel->width,
|
||||
innerrel->width,
|
||||
mergeouterpath,
|
||||
innerpath,
|
||||
merge_pathkeys,
|
||||
mergeclauses,
|
||||
outersortkeys,
|
||||
NIL));
|
||||
}
|
||||
}
|
||||
|
||||
return mp_list;
|
||||
return path_list;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -520,49 +553,23 @@ hash_inner_and_outer(Query *root,
|
||||
foreach(i, joinrel->restrictinfo)
|
||||
{
|
||||
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
|
||||
Oid hashjoinop = restrictinfo->hashjoinoperator;
|
||||
|
||||
/* we consider only clauses previously marked hashjoinable */
|
||||
if (hashjoinop)
|
||||
if (restrictinfo->hashjoinoperator)
|
||||
{
|
||||
Expr *clause = restrictinfo->clause;
|
||||
Var *leftop = get_leftop(clause);
|
||||
Var *rightop = get_rightop(clause);
|
||||
JoinKey *joinkey = makeNode(JoinKey);
|
||||
List *joinkey_list;
|
||||
List *outerkeys;
|
||||
List *innerkeys;
|
||||
Var *innerop;
|
||||
Cost innerdisbursion;
|
||||
List *hash_pathkeys;
|
||||
HashPath *hash_path;
|
||||
|
||||
/* construct joinkey and pathkeys for this clause */
|
||||
/* find the inner var and estimate its disbursion */
|
||||
if (intMember(leftop->varno, innerrel->relids))
|
||||
{
|
||||
joinkey->outer = rightop;
|
||||
joinkey->inner = leftop;
|
||||
}
|
||||
innerop = leftop;
|
||||
else
|
||||
{
|
||||
joinkey->outer = leftop;
|
||||
joinkey->inner = rightop;
|
||||
}
|
||||
joinkey_list = lcons(joinkey, NIL);
|
||||
|
||||
outerkeys = make_pathkeys_from_joinkeys(joinkey_list,
|
||||
outerrel->targetlist,
|
||||
OUTER);
|
||||
innerkeys = make_pathkeys_from_joinkeys(joinkey_list,
|
||||
innerrel->targetlist,
|
||||
INNER);
|
||||
|
||||
innerdisbursion = estimate_disbursion(root, joinkey->inner);
|
||||
|
||||
/*
|
||||
* We cannot assume that the output of the hashjoin appears in
|
||||
* any particular order, so it should have NIL pathkeys.
|
||||
*/
|
||||
hash_pathkeys = NIL;
|
||||
innerop = rightop;
|
||||
innerdisbursion = estimate_disbursion(root, innerop);
|
||||
|
||||
hash_path = create_hashjoin_path(joinrel,
|
||||
outerrel->size,
|
||||
@ -571,11 +578,7 @@ hash_inner_and_outer(Query *root,
|
||||
innerrel->width,
|
||||
(Path *) outerrel->cheapestpath,
|
||||
(Path *) innerrel->cheapestpath,
|
||||
hash_pathkeys,
|
||||
hashjoinop,
|
||||
lcons(clause, NIL),
|
||||
outerkeys,
|
||||
innerkeys,
|
||||
innerdisbursion);
|
||||
hpath_list = lappend(hpath_list, hash_path);
|
||||
}
|
||||
@ -605,3 +608,36 @@ estimate_disbursion(Query *root, Var *var)
|
||||
|
||||
return (Cost) get_attdisbursion(relid, var->varattno, 0.1);
|
||||
}
|
||||
|
||||
/*
|
||||
* select_mergejoin_clauses
|
||||
* Select mergejoin clauses that are usable for a particular join.
|
||||
* Returns a list of RestrictInfo nodes for those clauses.
|
||||
*
|
||||
* Currently, all we need is the restrictinfo list of the joinrel.
|
||||
* By definition, any mergejoinable clause in that list will work ---
|
||||
* it must involve only vars in the join, or it wouldn't have been
|
||||
* in the restrict list, and it must involve vars on both sides of
|
||||
* the join, or it wouldn't have made it up to this level of join.
|
||||
* Since we currently allow only simple Vars as the left and right
|
||||
* sides of mergejoin clauses, that means the mergejoin clauses must
|
||||
* be usable for this join. If we ever allow more complex expressions
|
||||
* containing multiple Vars, we would need to check that each side
|
||||
* of a potential joinclause uses only vars from one side of the join.
|
||||
*/
|
||||
static List *
|
||||
select_mergejoin_clauses(List *restrictinfo_list)
|
||||
{
|
||||
List *result_list = NIL;
|
||||
List *i;
|
||||
|
||||
foreach(i, restrictinfo_list)
|
||||
{
|
||||
RestrictInfo *restrictinfo = lfirst(i);
|
||||
|
||||
if (restrictinfo->mergejoinoperator != InvalidOid)
|
||||
result_list = lcons(restrictinfo, result_list);
|
||||
}
|
||||
|
||||
return result_list;
|
||||
}
|
||||
|
Reference in New Issue
Block a user