1
0
mirror of https://github.com/postgres/postgres.git synced 2025-11-24 00:23:06 +03:00

snapshot scalability: Don't compute global horizons while building snapshots.

To make GetSnapshotData() more scalable, it cannot not look at at each proc's
xmin: While snapshot contents do not need to change whenever a read-only
transaction commits or a snapshot is released, a proc's xmin is modified in
those cases. The frequency of xmin modifications leads to, particularly on
higher core count systems, many cache misses inside GetSnapshotData(), despite
the data underlying a snapshot not changing. That is the most
significant source of GetSnapshotData() scaling poorly on larger systems.

Without accessing xmins, GetSnapshotData() cannot calculate accurate horizons /
thresholds as it has so far. But we don't really have to: The horizons don't
actually change that much between GetSnapshotData() calls. Nor are the horizons
actually used every time a snapshot is built.

The trick this commit introduces is to delay computation of accurate horizons
until there use and using horizon boundaries to determine whether accurate
horizons need to be computed.

The use of RecentGlobal[Data]Xmin to decide whether a row version could be
removed has been replaces with new GlobalVisTest* functions.  These use two
thresholds to determine whether a row can be pruned:
1) definitely_needed, indicating that rows deleted by XIDs >= definitely_needed
   are definitely still visible.
2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
   definitely be removed
GetSnapshotData() updates definitely_needed to be the xmin of the computed
snapshot.

When testing whether a row can be removed (with GlobalVisTestIsRemovableXid())
and the tested XID falls in between the two (i.e. XID >= maybe_needed && XID <
definitely_needed) the boundaries can be recomputed to be more accurate. As it
is not cheap to compute accurate boundaries, we limit the number of times that
happens in short succession.  As the boundaries used by
GlobalVisTestIsRemovableXid() are never reset (with maybe_needed updated by
GetSnapshotData()), it is likely that further test can benefit from an earlier
computation of accurate horizons.

To avoid regressing performance when old_snapshot_threshold is set (as that
requires an accurate horizon to be computed), heap_page_prune_opt() doesn't
unconditionally call TransactionIdLimitedForOldSnapshots() anymore. Both the
computation of the limited horizon, and the triggering of errors (with
SetOldSnapshotThresholdTimestamp()) is now only done when necessary to remove
tuples.

This commit just removes the accesses to PGXACT->xmin from
GetSnapshotData(), but other members of PGXACT residing in the same
cache line are accessed. Therefore this in itself does not result in a
significant improvement. Subsequent commits will take advantage of the
fact that GetSnapshotData() now does not need to access xmins anymore.

Note: This contains a workaround in heap_page_prune_opt() to keep the
snapshot_too_old tests working. While that workaround is ugly, the tests
currently are not meaningful, and it seems best to address them separately.

Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
This commit is contained in:
Andres Freund
2020-08-12 16:03:49 -07:00
parent 1f42d35a1d
commit dc7420c2c9
38 changed files with 1466 additions and 570 deletions

View File

@@ -788,6 +788,7 @@ lazy_scan_heap(Relation onerel, VacuumParams *params, LVRelStats *vacrelstats,
PROGRESS_VACUUM_MAX_DEAD_TUPLES
};
int64 initprog_val[3];
GlobalVisState *vistest;
pg_rusage_init(&ru0);
@@ -816,6 +817,8 @@ lazy_scan_heap(Relation onerel, VacuumParams *params, LVRelStats *vacrelstats,
vacrelstats->nonempty_pages = 0;
vacrelstats->latestRemovedXid = InvalidTransactionId;
vistest = GlobalVisTestFor(onerel);
/*
* Initialize state for a parallel vacuum. As of now, only one worker can
* be used for an index, so we invoke parallelism only if there are at
@@ -1239,7 +1242,8 @@ lazy_scan_heap(Relation onerel, VacuumParams *params, LVRelStats *vacrelstats,
*
* We count tuples removed by the pruning step as removed by VACUUM.
*/
tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false,
tups_vacuumed += heap_page_prune(onerel, buf, vistest, false,
InvalidTransactionId, 0,
&vacrelstats->latestRemovedXid);
/*
@@ -1596,14 +1600,16 @@ lazy_scan_heap(Relation onerel, VacuumParams *params, LVRelStats *vacrelstats,
}
/*
* It's possible for the value returned by GetOldestXmin() to move
* backwards, so it's not wrong for us to see tuples that appear to
* not be visible to everyone yet, while PD_ALL_VISIBLE is already
* set. The real safe xmin value never moves backwards, but
* GetOldestXmin() is conservative and sometimes returns a value
* that's unnecessarily small, so if we see that contradiction it just
* means that the tuples that we think are not visible to everyone yet
* actually are, and the PD_ALL_VISIBLE flag is correct.
* It's possible for the value returned by
* GetOldestNonRemovableTransactionId() to move backwards, so it's not
* wrong for us to see tuples that appear to not be visible to
* everyone yet, while PD_ALL_VISIBLE is already set. The real safe
* xmin value never moves backwards, but
* GetOldestNonRemovableTransactionId() is conservative and sometimes
* returns a value that's unnecessarily small, so if we see that
* contradiction it just means that the tuples that we think are not
* visible to everyone yet actually are, and the PD_ALL_VISIBLE flag
* is correct.
*
* There should never be dead tuples on a page with PD_ALL_VISIBLE
* set, however.