1
0
mirror of https://github.com/postgres/postgres.git synced 2025-07-30 11:03:19 +03:00

Introduce jsonb, a structured format for storing json.

The new format accepts exactly the same data as the json type. However, it is
stored in a format that does not require reparsing the orgiginal text in order
to process it, making it much more suitable for indexing and other operations.
Insignificant whitespace is discarded, and the order of object keys is not
preserved. Neither are duplicate object keys kept - the later value for a given
key is the only one stored.

The new type has all the functions and operators that the json type has,
with the exception of the json generation functions (to_json, json_agg etc.)
and with identical semantics. In addition, there are operator classes for
hash and btree indexing, and two classes for GIN indexing, that have no
equivalent in the json type.

This feature grew out of previous work by Oleg Bartunov and Teodor Sigaev, which
was intended to provide similar facilities to a nested hstore type, but which
in the end proved to have some significant compatibility issues.

Authors: Oleg Bartunov,  Teodor Sigaev, Peter Geoghegan and Andrew Dunstan.
Review: Andres Freund
This commit is contained in:
Andrew Dunstan
2014-03-23 16:40:19 -04:00
parent b2b2491b06
commit d9134d0a35
43 changed files with 11701 additions and 420 deletions

View File

@ -139,7 +139,13 @@
<row>
<entry><type>json</type></entry>
<entry></entry>
<entry>JSON data</entry>
<entry>textual JSON data</entry>
</row>
<row>
<entry><type>jsonb</type></entry>
<entry></entry>
<entry>binary JSON data, decomposed</entry>
</row>
<row>
@ -4220,34 +4226,7 @@ SET xmloption TO { DOCUMENT | CONTENT };
</sect2>
</sect1>
<sect1 id="datatype-json">
<title><acronym>JSON</> Type</title>
<indexterm zone="datatype-json">
<primary>JSON</primary>
</indexterm>
<para>
The <type>json</type> data type can be used to store JSON (JavaScript
Object Notation) data, as specified in <ulink
url="http://www.ietf.org/rfc/rfc4627.txt">RFC 4627</ulink>. Such
data can also be stored as <type>text</type>, but the
<type>json</type> data type has the advantage of checking that each
stored value is a valid JSON value. There are also related support
functions available; see <xref linkend="functions-json">.
</para>
<para>
<productname>PostgreSQL</productname> allows only one server encoding
per database. It is therefore not possible for JSON to conform rigidly
to the specification unless the server encoding is UTF-8. Attempts to
directly include characters which cannot be represented in the server
encoding will fail; conversely, characters which can be represented in
the server encoding but not in UTF-8 will be allowed.
<literal>\uXXXX</literal> escapes are allowed regardless of the server
encoding, and are checked only for syntactic correctness.
</para>
</sect1>
&json;
&array;

View File

@ -22,6 +22,7 @@
<!ENTITY dml SYSTEM "dml.sgml">
<!ENTITY func SYSTEM "func.sgml">
<!ENTITY indices SYSTEM "indices.sgml">
<!ENTITY json SYSTEM "json.sgml">
<!ENTITY mvcc SYSTEM "mvcc.sgml">
<!ENTITY perform SYSTEM "perform.sgml">
<!ENTITY queries SYSTEM "queries.sgml">

View File

@ -10079,12 +10079,13 @@ table2-mapping
</indexterm>
<para>
<xref linkend="functions-json-op-table"> shows the operators that are
available for use with JSON (see <xref linkend="datatype-json">) data.
<xref linkend="functions-json-op-table"> shows the operators that
are available for use with the two JSON datatypes (see <xref
linkend="datatype-json">).
</para>
<table id="functions-json-op-table">
<title>JSON Operators</title>
<title><type>json</> and <type>jsonb</> Operators</title>
<tgroup cols="4">
<thead>
<row>
@ -10121,13 +10122,13 @@ table2-mapping
</row>
<row>
<entry><literal>#&gt;</literal></entry>
<entry>array of text</entry>
<entry>text[]</entry>
<entry>Get JSON object at specified path</entry>
<entry><literal>'{"a":[1,2,3],"b":[4,5,6]}'::json#&gt;'{a,2}'</literal></entry>
</row>
<row>
<entry><literal>#&gt;&gt;</literal></entry>
<entry>array of text</entry>
<entry>text[]</entry>
<entry>Get JSON object at specified path as text</entry>
<entry><literal>'{"a":[1,2,3],"b":[4,5,6]}'::json#&gt;&gt;'{a,2}'</literal></entry>
</row>
@ -10135,13 +10136,107 @@ table2-mapping
</tgroup>
</table>
<note>
<para>
There are parallel variants of these operators for both the
<type>json</type> and <type>jsonb</type> types. In addition to
those operators common to both types, a further set of operators
exists for <type>jsonb</type> (which comprise the default
<acronym>GIN</acronym> operator class).
</para>
</note>
<para>
<xref linkend="functions-json-table"> shows the functions that are available
for creating and manipulating JSON (see <xref linkend="datatype-json">) data.
The following are <type>jsonb</>-only operators, used by
<type>jsonb</> operator classes. For a full description of
<type>jsonb</> containment semantics and nesting, see <xref
linkend="json-containment">. <xref linkend="json-indexing">
describes how these operators can be used to effectively index
<type>jsonb</>.
</para>
<table id="functions-jsonb-op-table">
<title>Additonal JSONB Operators</title>
<tgroup cols="4">
<thead>
<row>
<entry>Operator</entry>
<entry>Right Operand Type</entry>
<entry>Description</entry>
<entry>Example</entry>
</row>
</thead>
<tbody>
<row>
<entry><literal>=</literal></entry>
<entry>jsonb</entry>
<entry>Is the jsonb equal to this jsonb?</entry>
<entry><literal>'[1,2,3]'::jsonb = '[1,2,3]'::jsonb</literal></entry>
</row>
<row>
<entry><literal>@&gt;</literal></entry>
<entry>jsonb</entry>
<entry>Does the jsonb contain within it this jsonb?</entry>
<entry><literal>'{"a":1, "b":2}'::jsonb &#64;&gt; '{"b":2}'::jsonb</literal></entry>
</row>
<row>
<entry><literal>&lt;@</literal></entry>
<entry>jsonb</entry>
<entry>Does the jsonb have contained within it this jsonb?</entry>
<entry><literal>'{"b":2}'::jsonb &lt;@ '{"a":1, "b":2}'::jsonb</literal></entry>
</row>
<row>
<entry><literal>?</literal></entry>
<entry>text</entry>
<entry>Does this key/element <emphasis>string</emphasis> exist?</entry>
<entry><literal>'{"a":1, "b":2}'::jsonb ? 'b'</literal></entry>
</row>
<row>
<entry><literal>?|</literal></entry>
<entry>text[]</entry>
<entry>Do any of these key/element <emphasis>strings</emphasis> exist?</entry>
<entry><literal>'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'c']</literal></entry>
</row>
<row>
<entry><literal>?&amp;</literal></entry>
<entry>text[]</entry>
<entry>Do all of these key/element <emphasis>strings</emphasis> exist?</entry>
<entry><literal>'["a", "b"]'::jsonb ?&amp; array['a', 'b']</literal></entry>
</row>
</tbody>
</tgroup>
</table>
<!--
The release notes contain a reference to "functions-json-table". Since
that table is now split in two, the id has been parked here so we don't
have to change the release notes.
-->
<para id="functions-json-table">
<xref linkend="functions-json-creation-table"> shows the functions that are
available for creating <type>json</type> values.
(see <xref linkend="datatype-json">)
</para>
<table id="functions-json-table">
<title>JSON Support Functions</title>
<indexterm>
<primary>array_to_json</primary>
</indexterm>
<indexterm>
<primary>row_to_json</primary>
</indexterm>
<indexterm>
<primary>to_json</primary>
</indexterm>
<indexterm>
<primary>json_build_array</primary>
</indexterm>
<indexterm>
<primary>json_build_object</primary>
</indexterm>
<indexterm>
<primary>json_object</primary>
</indexterm>
<table id="functions-json-creation-table">
<title>JSON Creation Functions</title>
<tgroup cols="5">
<thead>
<row>
@ -10155,9 +10250,6 @@ table2-mapping
<tbody>
<row>
<entry>
<indexterm>
<primary>array_to_json</primary>
</indexterm>
<literal>array_to_json(anyarray [, pretty_bool])</literal>
</entry>
<entry><type>json</type></entry>
@ -10171,9 +10263,6 @@ table2-mapping
</row>
<row>
<entry>
<indexterm>
<primary>row_to_json</primary>
</indexterm>
<literal>row_to_json(record [, pretty_bool])</literal>
</entry>
<entry><type>json</type></entry>
@ -10186,9 +10275,6 @@ table2-mapping
</row>
<row>
<entry>
<indexterm>
<primary>to_json</primary>
</indexterm>
<literal>to_json(anyelement)</literal>
</entry>
<entry><type>json</type></entry>
@ -10204,223 +10290,6 @@ table2-mapping
</row>
<row>
<entry>
<indexterm>
<primary>json_array_length</primary>
</indexterm>
<literal>json_array_length(json)</literal>
</entry>
<entry><type>int</type></entry>
<entry>
Returns the number of elements in the outermost JSON array.
</entry>
<entry><literal>json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]')</literal></entry>
<entry><literal>5</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_each</primary>
</indexterm>
<literal>json_each(json)</literal>
</entry>
<entry><type>SETOF key text, value json</type></entry>
<entry>
Expands the outermost JSON object into a set of key/value pairs.
</entry>
<entry><literal>select * from json_each('{"a":"foo", "b":"bar"}')</literal></entry>
<entry>
<programlisting>
key | value
-----+-------
a | "foo"
b | "bar"
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_each_text</primary>
</indexterm>
<literal>json_each_text(from_json json)</literal>
</entry>
<entry><type>SETOF key text, value text</type></entry>
<entry>
Expands the outermost JSON object into a set of key/value pairs. The
returned value will be of type text.
</entry>
<entry><literal>select * from json_each_text('{"a":"foo", "b":"bar"}')</literal></entry>
<entry>
<programlisting>
key | value
-----+-------
a | foo
b | bar
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_extract_path</primary>
</indexterm>
<literal>json_extract_path(from_json json, VARIADIC path_elems text[])</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Returns JSON value pointed to by <parameter>path_elems</parameter>.
</entry>
<entry><literal>json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}','f4')</literal></entry>
<entry><literal>{"f5":99,"f6":"foo"}</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_extract_path_text</primary>
</indexterm>
<literal>json_extract_path_text(from_json json, VARIADIC path_elems text[])</literal>
</entry>
<entry><type>text</type></entry>
<entry>
Returns JSON value pointed to by <parameter>path_elems</parameter>.
</entry>
<entry><literal>json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}','f4', 'f6')</literal></entry>
<entry><literal>foo</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_object_keys</primary>
</indexterm>
<literal>json_object_keys(json)</literal>
</entry>
<entry><type>SETOF text</type></entry>
<entry>
Returns set of keys in the JSON object. Only the <quote>outer</quote> object will be displayed.
</entry>
<entry><literal>json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}')</literal></entry>
<entry>
<programlisting>
json_object_keys
------------------
f1
f2
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_populate_record</primary>
</indexterm>
<literal>json_populate_record(base anyelement, from_json json, [, use_json_as_text bool=false]</literal>
</entry>
<entry><type>anyelement</type></entry>
<entry>
Expands the object in <replaceable>from_json</replaceable> to a row whose columns match
the record type defined by base. Conversion will be best
effort; columns in base with no corresponding key in <replaceable>from_json</replaceable>
will be left null. If a column is specified more than once, the last value is used.
</entry>
<entry><literal>select * from json_populate_record(null::x, '{"a":1,"b":2}')</literal></entry>
<entry>
<programlisting>
a | b
---+---
1 | 2
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_populate_recordset</primary>
</indexterm>
<literal>json_populate_recordset(base anyelement, from_json json, [, use_json_as_text bool=false]</literal>
</entry>
<entry><type>SETOF anyelement</type></entry>
<entry>
Expands the outermost set of objects in <replaceable>from_json</replaceable> to a set
whose columns match the record type defined by base.
Conversion will be best effort; columns in base with no
corresponding key in <replaceable>from_json</replaceable> will be left null.
If a column is specified more than once, the last value is used.
</entry>
<entry><literal>select * from json_populate_recordset(null::x, '[{"a":1,"b":2},{"a":3,"b":4}]')</literal></entry>
<entry>
<programlisting>
a | b
---+---
1 | 2
3 | 4
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_array_elements</primary>
</indexterm>
<literal>json_array_elements(json)</literal>
</entry>
<entry><type>SETOF json</type></entry>
<entry>
Expands a JSON array to a set of JSON values.
</entry>
<entry><literal>SELECT * FROM json_array_elements('[1,true, [2,false]]')</literal></entry>
<entry>
<programlisting>
value
-----------
1
true
[2,false]
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_array_elements_text</primary>
</indexterm>
<literal>json_array_elements_text(json)</literal>
</entry>
<entry><type>SETOF text</type></entry>
<entry>
Expands a JSON array to a set of text values.
</entry>
<entry><literal>SELECT * FROM json_array_elements_text('["foo", "bar"]')</literal></entry>
<entry>
<programlisting>
value
-----------
foo
bar
</programlisting>
</entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_typeof</primary>
</indexterm>
<literal>json_typeof(json)</literal>
</entry>
<entry><type>text</type></entry>
<entry>
Returns the type of the outermost JSON value as a text string. The types are
<literal>object</>, <literal>array</>, <literal>string</>, <literal>number</>,
<literal>boolean</>, and <literal>null</>. (See note below regarding the
distinction between a JSON <literal>null</> and a SQL NULL.)
</entry>
<entry><literal>json_typeof('-123.4')</literal></entry>
<entry><literal>number</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_build_array</primary>
</indexterm>
<literal>json_build_array(VARIADIC "any")</literal>
</entry>
<entry><type>json</type></entry>
@ -10438,16 +10307,13 @@ table2-mapping
</row>
<row>
<entry>
<indexterm>
<primary>json_build_object</primary>
</indexterm>
<literal>json_build_object(VARIADIC "any")</literal>
</entry>
<entry><type>json</type></entry>
<entry>
Builds a JSON array out of a variadic argument list.
By convention, the object is
constructed out of alternating name/value arguments.
Builds a JSON array out of a variadic argument list. By
convention, the object is constructed out of alternating
name/value arguments.
</entry>
<entry><literal>SELECT json_build_object('foo',1,'bar',2);</literal></entry>
<entry>
@ -10460,9 +10326,6 @@ table2-mapping
</row>
<row>
<entry>
<indexterm>
<primary>json_object</primary>
</indexterm>
<literal>json_object(text[])</literal>
</entry>
<entry><type>json</type></entry>
@ -10473,7 +10336,7 @@ table2-mapping
such that each inner array has exactly two elements, which
are taken as a name/value pair.
</entry>
<entry><literal>select * from json_object('{a, 1, b, "def", c, 3.5}') or <literal>select * from json_object('{{a, 1},{b, "def"},{c, 3.5}}')</literal></literal></entry>
<entry><literal>select * from json_object('{a, 1, b, "def", c, 3.5}') or <literal>select json_object('{{a, 1},{b, "def"},{c, 3.5}}')</literal></literal></entry>
<entry>
<programlisting>
json_object
@ -10491,7 +10354,7 @@ table2-mapping
The two-argument form of JSON object takes keys and values pairwise from two separate
arrays. In all other respects it is identical to the one-argument form.
</entry>
<entry><literal>select * from json_object('{a, b}', '{1,2}');</literal></entry>
<entry><literal>select json_object('{a, b}', '{1,2}');</literal></entry>
<entry>
<programlisting>
json_object
@ -10500,16 +10363,298 @@ table2-mapping
</programlisting>
</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
<xref linkend="functions-json-processing-table"> shows the functions that
are available for processing <type>json</type> and <type>jsonb</type> values.
(see <xref linkend="datatype-json">)
</para>
<indexterm>
<primary>json_array_length</primary>
</indexterm>
<indexterm>
<primary>jsonb_array_length</primary>
</indexterm>
<indexterm>
<primary>json_each</primary>
</indexterm>
<indexterm>
<primary>jsonb_each</primary>
</indexterm>
<indexterm>
<primary>json_each_text</primary>
</indexterm>
<indexterm>
<primary>jsonb_each_text</primary>
</indexterm>
<indexterm>
<primary>json_extract_path</primary>
</indexterm>
<indexterm>
<primary>jsonb_extract_path</primary>
</indexterm>
<indexterm>
<primary>json_extract_path_text</primary>
</indexterm>
<indexterm>
<primary>jsonb_extract_path_text</primary>
</indexterm>
<indexterm>
<primary>json_object_keys</primary>
</indexterm>
<indexterm>
<primary>jsonb_object_keys</primary>
</indexterm>
<indexterm>
<primary>json_populate_record</primary>
</indexterm>
<indexterm>
<primary>jsonb_populate_record</primary>
</indexterm>
<indexterm>
<primary>json_populate_recordset</primary>
</indexterm>
<indexterm>
<primary>jsonb_populate_recordset</primary>
</indexterm>
<indexterm>
<primary>json_array_elements</primary>
</indexterm>
<indexterm>
<primary>jsonb_array_elements</primary>
</indexterm>
<indexterm>
<primary>json_array_elements_text</primary>
</indexterm>
<indexterm>
<primary>jsonb_array_elements_text</primary>
</indexterm>
<indexterm>
<primary>json_typeof</primary>
</indexterm>
<indexterm>
<primary>jsonb_typeof</primary>
</indexterm>
<indexterm>
<primary>json_to_record</primary>
</indexterm>
<indexterm>
<primary>json_to_recordset</primary>
</indexterm>
<table id="functions-json-processing-table">
<title>JSON Processing Functions</title>
<tgroup cols="5">
<thead>
<row>
<entry>Function</entry>
<entry>Return Type</entry>
<entry>Description</entry>
<entry>Example</entry>
<entry>Example Result</entry>
</row>
</thead>
<tbody>
<row>
<entry><para><literal>json_array_length(json)</literal>
</para><para><literal>jsonb_array_length(jsonb)</literal>
</para></entry>
<entry><type>int</type></entry>
<entry>
Returns the number of elements in the outermost JSON array.
</entry>
<entry><literal>json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]')</literal></entry>
<entry><literal>5</literal></entry>
</row>
<row>
<entry><para><literal>json_each(json)</literal>
</para><para><literal>jsonb_each(jsonb)</literal>
</para></entry>
<entry><para><literal>SETOF key text, value json</literal>
</para><para><literal>SETOF key text, value jsonb</literal>
</para></entry>
<entry>
Expands the outermost JSON object into a set of key/value pairs.
</entry>
<entry><literal>select * from json_each('{"a":"foo", "b":"bar"}')</literal></entry>
<entry>
<programlisting>
key | value
-----+-------
a | "foo"
b | "bar"
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_each_text(from_json json)</literal>
</para><para><literal>jsonb_each_text(from_json jsonb)</literal>
</para></entry>
<entry><type>SETOF key text, value text</type></entry>
<entry>
Expands the outermost JSON object into a set of key/value pairs. The
returned value will be of type text.
</entry>
<entry><literal>select * from json_each_text('{"a":"foo", "b":"bar"}')</literal></entry>
<entry>
<programlisting>
key | value
-----+-------
a | foo
b | bar
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_extract_path(from_json json, VARIADIC path_elems text[])</literal>
</para><para><literal>jsonb_extract_path(from_jsonb jsonb, VARIADIC path_elems text[])</literal>
</para></entry>
<entry><para><type>json</type></para><para><type>jsonb</type>
</para></entry>
<entry>
Returns JSON value pointed to by <parameter>path_elems</parameter>.
</entry>
<entry><literal>json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}','f4')</literal></entry>
<entry><literal>{"f5":99,"f6":"foo"}</literal></entry>
</row>
<row>
<entry><para><literal>json_extract_path_text(from_json json, VARIADIC path_elems text[])</literal>
</para><para><literal>json_extract_path_text(from_json json, VARIADIC path_elems text[])</literal>
</para></entry>
<entry><type>text</type></entry>
<entry>
Returns JSON value pointed to by <parameter>path_elems</parameter>.
</entry>
<entry><literal>json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}','f4', 'f6')</literal></entry>
<entry><literal>foo</literal></entry>
</row>
<row>
<entry><para><literal>json_object_keys(json)</literal>
</para><para><literal>jsonb_object_keys(jsonb)</literal>
</para></entry>
<entry><type>SETOF text</type></entry>
<entry>
Returns set of keys in the JSON object. Only the <quote>outer</quote> object will be displayed.
</entry>
<entry><literal>json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}')</literal></entry>
<entry>
<programlisting>
json_object_keys
------------------
f1
f2
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_populate_record(base anyelement, from_json json, [, use_json_as_text bool=false])</literal>
</para><para><literal>jsonb_populate_record(base anyelement, from_json jsonb, [, use_json_as_text bool=false])</literal>
</para></entry>
<entry><type>anyelement</type></entry>
<entry>
Expands the object in <replaceable>from_json</replaceable> to a row whose columns match
the record type defined by base. Conversion will be best
effort; columns in base with no corresponding key in <replaceable>from_json</replaceable>
will be left null. When processing <type>json</type>, if a
column is specified more than once, the last value is used.
</entry>
<entry><literal>select * from json_populate_record(null::x, '{"a":1,"b":2}')</literal></entry>
<entry>
<programlisting>
a | b
---+---
1 | 2
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_populate_recordset(base anyelement, from_json json, [, use_json_as_text bool=false])</literal>
</para><para><literal>jsonb_populate_recordset(base anyelement, from_json jsonb, [, use_json_as_text bool=false])</literal>
</para></entry>
<entry><type>SETOF anyelement</type></entry>
<entry>
Expands the outermost set of objects in <replaceable>from_json</replaceable> to a set
whose columns match the record type defined by base.
Conversion will be best effort; columns in base with no
corresponding key in <replaceable>from_json</replaceable> will be left null.
When processing <type>json</type>, if a column is specified more
than once, the last value is used.
</entry>
<entry><literal>select * from json_populate_recordset(null::x, '[{"a":1,"b":2},{"a":3,"b":4}]')</literal></entry>
<entry>
<programlisting>
a | b
---+---
1 | 2
3 | 4
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_array_elements(json)</literal>
</para><para><literal>jsonb_array_elements(jsonb)</literal>
</para></entry>
<entry><para><type>SETOF json</type>
</para><para><type>SETOF jsonb</type>
</para></entry>
<entry>
Expands a JSON array to a set of JSON values.
</entry>
<entry><literal>SELECT * FROM json_array_elements('[1,true, [2,false]]')</literal></entry>
<entry>
<programlisting>
value
-----------
1
true
[2,false]
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_array_elements_text(json)</literal>
</para><para><literal>jsonb_array_elements_text(jsonb)</literal>
</para></entry>
<entry><type>SETOF text</type></entry>
<entry>
Expands a JSON array to a set of text values.
</entry>
<entry><literal>SELECT * FROM json_array_elements_text('["foo", "bar"]')</literal></entry>
<entry>
<programlisting>
value
-----------
foo
bar
</programlisting>
</entry>
</row>
<row>
<entry><para><literal>json_typeof(json)</literal>
</para><para><literal>jsonb_typeof(jsonb)</literal>
</para></entry>
<entry><type>text</type></entry>
<entry>
Returns the type of the outermost JSON value as a text string. The types are
<literal>object</>, <literal>array</>, <literal>string</>, <literal>number</>,
<literal>boolean</>, and <literal>null</>. (See note below regarding the
distinction between a JSON <literal>null</> and a SQL NULL.)
</entry>
<entry><literal>json_typeof('-123.4')</literal></entry>
<entry><literal>number</literal></entry>
</row>
<row>
<entry>
<indexterm>
<primary>json_to_record</primary>
</indexterm>
<literal>json_to_record(json, nested_as_text bool)</literal>
</entry>
<entry><type>record</type></entry>
<entry>
json_to_record returns an arbitrary record from a JSON object. As with all functions
Returns an arbitrary record from a JSON object. As with all functions
returning 'record', the caller must explicitly define the structure of the record
when making the call. The input JSON must be an object, not a scalar or an array.
If nested_as_text is true, the function coerces nested complex elements to text.
@ -10526,14 +10671,11 @@ table2-mapping
</row>
<row>
<entry>
<indexterm>
<primary>json_to_recordset</primary>
</indexterm>
<literal>json_to_recordset(json, nested_as_text bool)</literal>
</entry>
<entry><type>setof record</type></entry>
<entry>
json_to_recordset returns an arbitrary set of records from a JSON object. As with
Returns an arbitrary set of records from a JSON object. As with
json_to_record, the structure of the record must be explicitly defined when making the
call. However, with json_to_recordset the input JSON must be an array containing
objects. nested_as_text works as with json_to_record.

413
doc/src/sgml/json.sgml Normal file
View File

@ -0,0 +1,413 @@
<!-- doc/src/sgml/json.sgml -->
<sect1 id="datatype-json">
<title><acronym>JSON</> Types</title>
<indexterm zone="datatype-json">
<primary>JSON</primary>
</indexterm>
<indexterm zone="datatype-json">
<primary>JSONB</primary>
</indexterm>
<para>
JSON data types are for storing JSON (JavaScript Object Notation)
data, as specified in <ulink url="http://rfc7159.net/rfc7159">RFC
7159</ulink>. Such data can also be stored as <type>text</type>, but
both JSON data types have the advantage of enforcing that each
stored value is a valid JSON value. There are also related support
functions available; see <xref linkend="functions-json">.
</para>
<para>
There are two JSON data types: <type>json</> and <type>jsonb</>.
Both accept <emphasis>almost</emphasis> identical sets of values as
input. The major practical difference is one of efficiency. The
<type>json</> data type stores an exact copy of the the input text,
which processing functions must continually reparse, while
<type>jsonb</> data is stored in a decomposed binary format that
makes it slightly less efficient to input due to added serialization
overhead, but significantly faster to process, since it never needs
reparsing. <type>jsonb</> also supports advanced
<acronym>GIN</acronym> indexing, which is a further significant
advantage.
</para>
<para>
The other difference between the types is that the <type>json</>
type is guaranteed to contain an exact copy of the input, including
preservation of semantically insignificant white space, and the
order of keys within JSON objects (although <type>jsonb</> will
preserve trailing zeros within a JSON number). Also, because the
exact text is kept, if a JSON object within the value contains the
same key more than once, and has been stored using the <type>json</>
type, all the key/value pairs are kept. In that case, the
processing functions consider the last value as the operative one.
By contrast, <type>jsonb</> does not preserve white space, does not
preserve the order of object keys, and does not keep duplicate
object keys. Only the last value for a key specified in the input
is kept.
</para>
<para>
In general, most applications will prefer to store JSON data as
<type>jsonb</>, unless there are quite specialized needs.
</para>
<para>
<productname>PostgreSQL</productname> allows only one server
encoding per database. It is therefore not possible for the JSON
types to conform rigidly to the specification unless the server
encoding is UTF-8. Attempts to directly include characters which
cannot be represented in the server encoding will fail; conversely,
characters which can be represented in the server encoding but not
in UTF-8 will be allowed. <literal>\uXXXX</literal> escapes are
allowed regardless of the server encoding, and are checked only for
syntactic correctness.
</para>
<sect2 id="json-types">
<title>Mapping of RFC-7159/JSON Primitive Types to <productname>PostgreSQL</productname> Types</title>
<table id="json-type-mapping-table">
<title>Mapping of type correspondence, notes</title>
<tgroup cols="3">
<thead>
<row>
<entry><productname>PostgreSQL</productname> type</entry>
<entry>RFC-7159/JSON primitive type</entry>
<entry>Notes</entry>
</row>
</thead>
<tbody>
<row>
<entry><type>text</></entry>
<entry><type>string</></entry>
<entry>See general introductory notes on encoding and JSON</entry>
</row>
<row>
<entry><type>numeric</></entry>
<entry><type>number</></entry>
<entry><literal>NaN</literal> and <literal>infinity</literal> values are disallowed</entry>
</row>
<row>
<entry><type>boolean</></entry>
<entry><type>boolean</></entry>
<entry>Only lowercase <literal>true</literal> and <literal>false</literal> values are accepted</entry>
</row>
<row>
<entry><type>unknown</></entry>
<entry><type>null</></entry>
<entry>SQL <literal>NULL</literal> is orthogonal. NULL semantics do not apply.</entry>
</row>
</tbody>
</tgroup>
</table>
<para>
Primitive types described by <acronym>RFC</> 7159 are effectively
internally mapped onto native
<productname>PostgreSQL</productname> types. Therefore, there are
some very minor additional constraints on what constitutes valid
<type>jsonb</type> that do not apply to the <type>json</type>
type, or to JSON in the abstract, that pertain to limits on what
can be represented by the underlying type system. These
implementation-defined restrictions are permitted by
<acronym>RFC</> 7159. However, in practice problems are far more
likely to occur in other implementations which internally
represent the <type>number</> JSON primitive type as IEEE 754
double precision floating point values, which <acronym>RFC</> 7159
explicitly anticipates and allows for. When using JSON as an
interchange format with such systems, the danger of losing numeric
precision in respect of data originally stored by
<productname>PostgreSQL</productname> should be considered.
</para>
<para>
Conversely, as noted above there are some minor restrictions on
the input format of JSON primitive types that do not apply to
corresponding <productname>PostgreSQL</productname> types.
</para>
</sect2>
<sect2 id="json-querying">
<title>Querying <type>jsonb</type> documents effectively</title>
<para>
Representing data as JSON can be considerably more flexible than
the traditional relational data model, which is compelling in
environments where requirements are fluid. It is quite possible
for both approaches to co-exist and complement each other within
the same application. However, even for applications where maximal
flexibility is desired, it is still recommended that JSON documents
have a somewhat fixed structure. This structure is typically
unenforced (though enforcing some business rules declaratively is
possible), but makes it easier to write queries that usefully
summarize a set of <quote>documents</> (datums) in a table.
</para>
<para>
<type>jsonb</> data is subject to the same concurrency control
considerations as any other datatype when stored in a table.
Although storing large documents is practicable, in order to ensure
correct behavior row-level locks are, quite naturally, aquired as
rows are updated. Consider keeping <type>jsonb</> documents at a
manageable size in order to decrease lock contention among updating
transactions. Ideally, <type>jsonb</> documents should each
represent an atomic datum that business rules dictate cannot
reasonably be further subdivided into smaller atomic datums that
can be independently modified.
</para>
</sect2>
<sect2 id="json-keys-elements">
<title><type>jsonb</> Input and Output Syntax</title>
<para>
In effect, <type>jsonb</> has an internal type system whose
implementation is defined in terms of several particular ordinary
<productname>PostgreSQL</productname> types. The SQL parser does
not have direct knowledge of the internal types that constitute a
<type>jsonb</>.
</para>
<para>
The following are all valid <type>jsonb</> expressions:
<programlisting>
-- Simple scalar/primitive value (explicitly required by RFC-7159)
SELECT '5'::jsonb;
-- Array of heterogeneous, primitive-typed elements
SELECT '[1, 2, "foo", null]'::jsonb;
-- Object of heterogeneous key/value pairs of primitive types
-- Note that key values are always strings
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
</programlisting>
</para>
<para>
Note the distinction between scalar/primitive values as elements,
keys and values.
</para>
</sect2>
<sect2 id="json-containment">
<title><type>jsonb</> containment</title>
<indexterm>
<primary>jsonb</primary>
<secondary>containment</secondary>
</indexterm>
<para>
Testing <quote>containment</> is an important capability of
<type>jsonb</>. There is no parallel set of facilities for the
<type>json</> type. Containment is the ability to determine if
one <type>jsonb</> document has contained within it another one.
<type>jsonb</> is nested, and so containment semantics are nested;
technically, top-down, unordered <emphasis>subtree isomorphism</>
may be tested. Containment is conventionally tested using the
<literal>@&gt;</> operator, which is made indexable by various
operator classes discussed later in this section.
</para>
<programlisting>
-- Simple scalar/primitive values may contain only each other:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;
-- The array on the right hand side is contained within the one on the
-- left hand side:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;
-- The object with a single pair on the right hand side is contained
-- within the object on the left hand side:
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb":true}'::jsonb @> '{"version":9.4}'::jsonb;
-- The array on the right hand side is not contained within the array
-- containing a nested array on the left hand side:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb;
-- But with a layer of nesting, it is:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;
</programlisting>
<para>
It is both a sufficient and a necessary condition for nesting
levels to <quote>line up</> for one <type>jsonb</> to contain
within it another. Under this definition, objects and arrays
cannot <quote>line up</>, not least because objects contain
key/value pairs, while arrays contain elements.
</para>
<para>
As a special exception to the general principle that nesting
levels should <quote>line up</>, an array may contain a raw scalar:
</para>
<programlisting>
-- This array contains the raw scalar value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;
-- The special exception is not reciprocated -- non-containment is indicated here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb;
</programlisting>
<para>
Objects are better suited for testing containment when there is a
great deal of nesting involved, because unlike arrays they are
internally optimized for searching, and do not need to be searched
linearly within a single <type>jsonb</> document.
</para>
<programlisting>
-- The right-hand side object is contained in this example:
SELECT '{"p":1, "a":{"b":3, "q":11}, "i":77}'::jsonb @> '{"a":{"b":3}}'::jsonb;
</programlisting>
<para>
The various containment operators, along with all other JSON
operators and support functions are documented fully within <xref
linkend="functions-json">, <xref
linkend="functions-jsonb-op-table">.
</para>
</sect2>
<sect2 id="json-indexing">
<title><type>jsonb</> GIN Indexing</title>
<indexterm>
<primary>jsonb</primary>
<secondary>indexes on</secondary>
</indexterm>
<para>
<type>jsonb</> GIN indexes can be used to efficiently search among
more than one possible key/value pair within a single
<type>jsonb</> datum/document, among a large number of such
documents within a column in a table (i.e. among many rows).
</para>
<para>
<type>jsonb</> has GIN index support for the <literal>@&gt;</>,
<literal>?</>, <literal>?&amp;</> and <literal>?|</> operators.
The default GIN operator class makes all these operators
indexable:
</para>
<programlisting>
-- GIN index (default opclass)
CREATE INDEX idxgin ON api USING GIN (jdoc);
-- GIN jsonb_hash_ops index
CREATE INDEX idxginh ON api USING GIN (jdoc jsonb_hash_ops);
</programlisting>
<para>
The non-default GIN operator class <literal>jsonb_hash_ops</>
supports indexing the <literal>@&gt;</> operator only.
</para>
<para>
Consider the example of a table that stores JSON documents
retrieved from a third-party web service, with a documented schema
definition. An example of a document retrieved from this web
service is as follows:
<programlisting>
{
"guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
"name": "Angela Barton",
"is_active": true,
"company": "Magnafone",
"address": "178 Howard Place, Gulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08:00",
"latitude": 19.793713,
"longitude": 86.513373,
"tags": [
"enim",
"aliquip",
"qui"
]
}
</programlisting>
If a GIN index is created on the table that stores these
documents, <literal>api</literal>, on its <literal>jdoc</>
<type>jsonb</> column, we can expect that queries like the
following may make use of the index:
<programlisting>
-- Note that both key and value have been specified
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @&gt; '{"company": "Magnafone"}';
</programlisting>
However, the index could not be used for queries like the
following, due to the aforementioned nesting restriction:
<programlisting>
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';
</programlisting>
Still, with judicious use of expressional indexing, the above
query can use an index scan. If there is a requirement to find
those records with a particular tag quickly, and the tags have a
high cardinality across all documents, defining an index as
follows is an effective approach to indexing:
<programlisting>
-- Note that the "jsonb -> text" operator can only be called on an
-- object, so as a consequence of creating this index the root "jdoc"
-- datum must be an object. This is enforced during insertion.
CREATE INDEX idxgin ON api USING GIN ((jdoc -> 'tags'));
</programlisting>
</para>
<para>
Expressional indexes are discussed in <xref
linkend="indexes-expressional">.
</para>
<para>
For the most flexible approach in terms of what may be indexed,
sophisticated querying on nested structures is possible by
exploiting containment. At the cost of having to create an index
on the entire structure for each row, and not just a nested
subset, we may exploit containment semantics to get an equivalent
result with a non-expressional index on the entire <quote>jdoc</>
column, <emphasis>without</> ever having to create additional
expressional indexes against the document (provided only
containment will be tested). While the index will be considerably
larger than our expression index, it will also be much more
flexible, allowing arbitrary structured searching. Such an index
can generally be expected to help with a query like the following:
</para>
<programlisting>
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @&gt; '{"tags": ["qui"]}';
</programlisting>
<para>
For full details of the semantics that these indexable operators
implement, see <xref linkend="functions-json">, <xref
linkend="functions-jsonb-op-table">.
</para>
</sect2>
<sect2 id="json-opclass">
<title><type>jsonb</> non-default GIN operator class</title>
<indexterm>
<primary>jsonb</primary>
<secondary>indexes on</secondary>
</indexterm>
<para>
Although only the <literal>@&gt;</> operator is made indexable, a
<literal>jsonb_hash_ops</literal> operator class GIN index has
some notable advantages over an equivalent GIN index of the
default GIN operator class for <type>jsonb</type>. Search
operations typically perform considerably better, and the on-disk
size of a <literal>jsonb_hash_ops</literal> operator class GIN
index can be much smaller.
</para>
</sect2>
<sect2 id="json-btree-indexing">
<title><type>jsonb</> B-Tree and hash indexing</title>
<para>
<type>jsonb</type> comparisons and related operations are
<emphasis>type-wise</>, in that the underlying
<productname>PostgreSQL</productname> datatype comparators are
invoked recursively, much like a traditional composite type.
</para>
<para>
<type>jsonb</> also supports <type>btree</> and <type>hash</>
indexes. Ordering between <type>jsonb</> datums is:
<synopsis>
<replaceable>Object</replaceable> > <replaceable>Array</replaceable> > <replaceable>Boolean</replaceable> > <replaceable>Number</replaceable> > <replaceable>String</replaceable> > <replaceable>Null</replaceable>
<replaceable>Object with n pairs</replaceable> > <replaceable>object with n - 1 pairs</replaceable>
<replaceable>Array with n elements</replaceable> > <replaceable>array with n - 1 elements</replaceable>
</synopsis>
Subsequently, individual primitive type comparators are invoked.
All comparisons of JSON primitive types occurs using the same
comparison rules as the underlying
<productname>PostgreSQL</productname> types. Strings are
compared lexically, using the default database collation.
Objects with equal numbers of pairs are compared:
<synopsis>
<replaceable>key-1</replaceable>, <replaceable>value-1</replaceable>, <replaceable>key-2</replaceable> ...
</synopsis>
Note however that object keys are compared in their storage order, and in particular,
since shorter keys are stored before longer keys, this can lead to results that might be
unintuitive, such as:
<programlisting>{ "aa": 1, "c": 1} > {"b": 1, "d": 1}</programlisting>
Similarly, arrays with equal numbers of elements are compared:
<synopsis>
<replaceable>element-1</replaceable>, <replaceable>element-2</replaceable> ...
</synopsis>
</para>
</sect2>
</sect1>