1
0
mirror of https://github.com/postgres/postgres.git synced 2025-08-31 17:02:12 +03:00

8.4 pgindent run, with new combined Linux/FreeBSD/MinGW typedef list

provided by Andrew.
This commit is contained in:
Bruce Momjian
2009-06-11 14:49:15 +00:00
parent 4e86efb4e5
commit d747140279
654 changed files with 11900 additions and 11387 deletions

View File

@@ -8,15 +8,15 @@
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/storage/freespace/fsmpage.c,v 1.4 2009/01/01 17:23:47 momjian Exp $
* $PostgreSQL: pgsql/src/backend/storage/freespace/fsmpage.c,v 1.5 2009/06/11 14:49:01 momjian Exp $
*
* NOTES:
*
* The public functions in this file form an API that hides the internal
* structure of a FSM page. This allows freespace.c to treat each FSM page
* as a black box with SlotsPerPage "slots". fsm_set_avail() and
* fsm_get_avail() let you get/set the value of a slot, and
* fsm_search_avail() lets you search for a slot with value >= X.
* The public functions in this file form an API that hides the internal
* structure of a FSM page. This allows freespace.c to treat each FSM page
* as a black box with SlotsPerPage "slots". fsm_set_avail() and
* fsm_get_avail() let you get/set the value of a slot, and
* fsm_search_avail() lets you search for a slot with value >= X.
*
*-------------------------------------------------------------------------
*/
@@ -43,9 +43,9 @@ rightneighbor(int x)
x++;
/*
* Check if we stepped to the leftmost node at next level, and correct
* if so. The leftmost nodes at each level are numbered x = 2^level - 1,
* so check if (x + 1) is a power of two, using a standard
* Check if we stepped to the leftmost node at next level, and correct if
* so. The leftmost nodes at each level are numbered x = 2^level - 1, so
* check if (x + 1) is a power of two, using a standard
* twos-complement-arithmetic trick.
*/
if (((x + 1) & x) == 0)
@@ -62,9 +62,9 @@ rightneighbor(int x)
bool
fsm_set_avail(Page page, int slot, uint8 value)
{
int nodeno = NonLeafNodesPerPage + slot;
FSMPage fsmpage = (FSMPage) PageGetContents(page);
uint8 oldvalue;
int nodeno = NonLeafNodesPerPage + slot;
FSMPage fsmpage = (FSMPage) PageGetContents(page);
uint8 oldvalue;
Assert(slot < LeafNodesPerPage);
@@ -77,14 +77,14 @@ fsm_set_avail(Page page, int slot, uint8 value)
fsmpage->fp_nodes[nodeno] = value;
/*
* Propagate up, until we hit the root or a node that doesn't
* need to be updated.
* Propagate up, until we hit the root or a node that doesn't need to be
* updated.
*/
do
{
uint8 newvalue = 0;
int lchild;
int rchild;
uint8 newvalue = 0;
int lchild;
int rchild;
nodeno = parentof(nodeno);
lchild = leftchild(nodeno);
@@ -103,8 +103,8 @@ fsm_set_avail(Page page, int slot, uint8 value)
} while (nodeno > 0);
/*
* sanity check: if the new value is (still) higher than the value
* at the top, the tree is corrupt. If so, rebuild.
* sanity check: if the new value is (still) higher than the value at the
* top, the tree is corrupt. If so, rebuild.
*/
if (value > fsmpage->fp_nodes[0])
fsm_rebuild_page(page);
@@ -121,7 +121,7 @@ fsm_set_avail(Page page, int slot, uint8 value)
uint8
fsm_get_avail(Page page, int slot)
{
FSMPage fsmpage = (FSMPage) PageGetContents(page);
FSMPage fsmpage = (FSMPage) PageGetContents(page);
Assert(slot < LeafNodesPerPage);
@@ -137,7 +137,7 @@ fsm_get_avail(Page page, int slot)
uint8
fsm_get_max_avail(Page page)
{
FSMPage fsmpage = (FSMPage) PageGetContents(page);
FSMPage fsmpage = (FSMPage) PageGetContents(page);
return fsmpage->fp_nodes[0];
}
@@ -158,16 +158,17 @@ int
fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
bool exclusive_lock_held)
{
Page page = BufferGetPage(buf);
FSMPage fsmpage = (FSMPage) PageGetContents(page);
int nodeno;
int target;
uint16 slot;
Page page = BufferGetPage(buf);
FSMPage fsmpage = (FSMPage) PageGetContents(page);
int nodeno;
int target;
uint16 slot;
restart:
restart:
/*
* Check the root first, and exit quickly if there's no leaf with
* enough free space
* Check the root first, and exit quickly if there's no leaf with enough
* free space
*/
if (fsmpage->fp_nodes[0] < minvalue)
return -1;
@@ -184,13 +185,13 @@ fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
/*----------
* Start the search from the target slot. At every step, move one
* node to the right, then climb up to the parent. Stop when we reach
* node to the right, then climb up to the parent. Stop when we reach
* a node with enough free space (as we must, since the root has enough
* space).
*
* The idea is to gradually expand our "search triangle", that is, all
* nodes covered by the current node, and to be sure we search to the
* right from the start point. At the first step, only the target slot
* right from the start point. At the first step, only the target slot
* is examined. When we move up from a left child to its parent, we are
* adding the right-hand subtree of that parent to the search triangle.
* When we move right then up from a right child, we are dropping the
@@ -207,11 +208,11 @@ fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
*
* For example, consider this tree:
*
* 7
* 7 6
* 5 7 6 5
* 4 5 5 7 2 6 5 2
* T
* 7
* 7 6
* 5 7 6 5
* 4 5 5 7 2 6 5 2
* T
*
* Assume that the target node is the node indicated by the letter T,
* and we're searching for a node with value of 6 or higher. The search
@@ -230,8 +231,8 @@ fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
break;
/*
* Move to the right, wrapping around on same level if necessary,
* then climb up.
* Move to the right, wrapping around on same level if necessary, then
* climb up.
*/
nodeno = parentof(rightneighbor(nodeno));
}
@@ -243,7 +244,7 @@ fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
*/
while (nodeno < NonLeafNodesPerPage)
{
int childnodeno = leftchild(nodeno);
int childnodeno = leftchild(nodeno);
if (childnodeno < NodesPerPage &&
fsmpage->fp_nodes[childnodeno] >= minvalue)
@@ -260,17 +261,16 @@ fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
else
{
/*
* Oops. The parent node promised that either left or right
* child has enough space, but neither actually did. This can
* happen in case of a "torn page", IOW if we crashed earlier
* while writing the page to disk, and only part of the page
* made it to disk.
* Oops. The parent node promised that either left or right child
* has enough space, but neither actually did. This can happen in
* case of a "torn page", IOW if we crashed earlier while writing
* the page to disk, and only part of the page made it to disk.
*
* Fix the corruption and restart.
*/
RelFileNode rnode;
RelFileNode rnode;
ForkNumber forknum;
BlockNumber blknum;
BlockNumber blknum;
BufferGetTag(buf, &rnode, &forknum, &blknum);
elog(DEBUG1, "fixing corrupt FSM block %u, relation %u/%u/%u",
@@ -312,9 +312,9 @@ fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
bool
fsm_truncate_avail(Page page, int nslots)
{
FSMPage fsmpage = (FSMPage) PageGetContents(page);
uint8 *ptr;
bool changed = false;
FSMPage fsmpage = (FSMPage) PageGetContents(page);
uint8 *ptr;
bool changed = false;
Assert(nslots >= 0 && nslots < LeafNodesPerPage);
@@ -341,9 +341,9 @@ fsm_truncate_avail(Page page, int nslots)
bool
fsm_rebuild_page(Page page)
{
FSMPage fsmpage = (FSMPage) PageGetContents(page);
bool changed = false;
int nodeno;
FSMPage fsmpage = (FSMPage) PageGetContents(page);
bool changed = false;
int nodeno;
/*
* Start from the lowest non-leaf level, at last node, working our way
@@ -351,9 +351,9 @@ fsm_rebuild_page(Page page)
*/
for (nodeno = NonLeafNodesPerPage - 1; nodeno >= 0; nodeno--)
{
int lchild = leftchild(nodeno);
int rchild = lchild + 1;
uint8 newvalue = 0;
int lchild = leftchild(nodeno);
int rchild = lchild + 1;
uint8 newvalue = 0;
/* The first few nodes we examine might have zero or one child. */
if (lchild < NodesPerPage)