mirror of
https://github.com/postgres/postgres.git
synced 2025-06-11 20:28:21 +03:00
Simple constraint exclusion. For now, only child tables of inheritance
scans are candidates for exclusion; this should be fixed eventually. Simon Riggs, with some help from Tom Lane.
This commit is contained in:
@ -9,7 +9,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/optimizer/util/plancat.c,v 1.112 2005/06/13 23:14:48 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/backend/optimizer/util/plancat.c,v 1.113 2005/07/23 21:05:47 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -25,6 +25,7 @@
|
||||
#include "nodes/makefuncs.h"
|
||||
#include "optimizer/clauses.h"
|
||||
#include "optimizer/plancat.h"
|
||||
#include "optimizer/prep.h"
|
||||
#include "optimizer/tlist.h"
|
||||
#include "parser/parsetree.h"
|
||||
#include "parser/parse_expr.h"
|
||||
@ -359,6 +360,85 @@ estimate_rel_size(Relation rel, int32 *attr_widths,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* get_relation_constraints
|
||||
*
|
||||
* Retrieve the CHECK constraint expressions of the given relation.
|
||||
*
|
||||
* Returns a List (possibly empty) of constraint expressions. Each one
|
||||
* has been canonicalized, and its Vars are changed to have the varno
|
||||
* indicated by rel->relid. This allows the expressions to be easily
|
||||
* compared to expressions taken from WHERE.
|
||||
*
|
||||
* Note: at present this is invoked at most once per relation per planner
|
||||
* run, and in many cases it won't be invoked at all, so there seems no
|
||||
* point in caching the data in RelOptInfo.
|
||||
*/
|
||||
List *
|
||||
get_relation_constraints(Oid relationObjectId, RelOptInfo *rel)
|
||||
{
|
||||
List *result = NIL;
|
||||
Index varno = rel->relid;
|
||||
Relation relation;
|
||||
TupleConstr *constr;
|
||||
|
||||
/*
|
||||
* We assume the relation has already been safely locked.
|
||||
*/
|
||||
relation = heap_open(relationObjectId, NoLock);
|
||||
|
||||
constr = relation->rd_att->constr;
|
||||
if (constr != NULL)
|
||||
{
|
||||
int num_check = constr->num_check;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < num_check; i++)
|
||||
{
|
||||
Node *cexpr;
|
||||
|
||||
cexpr = stringToNode(constr->check[i].ccbin);
|
||||
|
||||
/*
|
||||
* Run each expression through const-simplification and
|
||||
* canonicalization. This is not just an optimization, but is
|
||||
* necessary, because we will be comparing it to
|
||||
* similarly-processed qual clauses, and may fail to detect valid
|
||||
* matches without this. This must match the processing done to
|
||||
* qual clauses in preprocess_expression()! (We can skip the
|
||||
* stuff involving subqueries, however, since we don't allow any
|
||||
* in check constraints.)
|
||||
*/
|
||||
cexpr = eval_const_expressions(cexpr);
|
||||
|
||||
cexpr = (Node *) canonicalize_qual((Expr *) cexpr);
|
||||
|
||||
/*
|
||||
* Also mark any coercion format fields as "don't care", so that
|
||||
* we can match to both explicit and implicit coercions.
|
||||
*/
|
||||
set_coercionform_dontcare(cexpr);
|
||||
|
||||
/* Fix Vars to have the desired varno */
|
||||
if (varno != 1)
|
||||
ChangeVarNodes(cexpr, 1, varno, 0);
|
||||
|
||||
/*
|
||||
* Finally, convert to implicit-AND format (that is, a List)
|
||||
* and append the resulting item(s) to our output list.
|
||||
*/
|
||||
result = list_concat(result,
|
||||
make_ands_implicit((Expr *) cexpr));
|
||||
}
|
||||
}
|
||||
|
||||
heap_close(relation, NoLock);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* build_physical_tlist
|
||||
*
|
||||
|
@ -9,7 +9,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.1 2005/06/10 22:25:36 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/backend/optimizer/util/predtest.c,v 1.2 2005/07/23 21:05:47 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -27,7 +27,11 @@
|
||||
|
||||
|
||||
static bool predicate_implied_by_recurse(Node *clause, Node *predicate);
|
||||
static bool predicate_refuted_by_recurse(Node *clause, Node *predicate);
|
||||
static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
|
||||
static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause);
|
||||
static bool btree_predicate_proof(Expr *predicate, Node *clause,
|
||||
bool refute_it);
|
||||
|
||||
|
||||
/*
|
||||
@ -35,12 +39,19 @@ static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause);
|
||||
* Recursively checks whether the clauses in restrictinfo_list imply
|
||||
* that the given predicate is true.
|
||||
*
|
||||
* The top-level List structure of each list corresponds to an AND list.
|
||||
* We assume that eval_const_expressions() has been applied and so there
|
||||
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
||||
* including AND just below the top-level List structure).
|
||||
* If this is not true we might fail to prove an implication that is
|
||||
* valid, but no worse consequences will ensue.
|
||||
* The top-level List structure of each list corresponds to an AND list.
|
||||
* We assume that eval_const_expressions() has been applied and so there
|
||||
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
||||
* including AND just below the top-level List structure).
|
||||
* If this is not true we might fail to prove an implication that is
|
||||
* valid, but no worse consequences will ensue.
|
||||
*
|
||||
* We assume the predicate has already been checked to contain only
|
||||
* immutable functions and operators. (In current use this is true
|
||||
* because the predicate is part of an index predicate that has passed
|
||||
* CheckPredicate().) We dare not make deductions based on non-immutable
|
||||
* functions, because they might change answers between the time we make
|
||||
* the plan and the time we execute the plan.
|
||||
*/
|
||||
bool
|
||||
predicate_implied_by(List *predicate_list, List *restrictinfo_list)
|
||||
@ -70,6 +81,44 @@ predicate_implied_by(List *predicate_list, List *restrictinfo_list)
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* predicate_refuted_by
|
||||
* Recursively checks whether the clauses in restrictinfo_list refute
|
||||
* the given predicate (that is, prove it false).
|
||||
*
|
||||
* This is NOT the same as !(predicate_implied_by), though it is similar
|
||||
* in the technique and structure of the code.
|
||||
*
|
||||
* The top-level List structure of each list corresponds to an AND list.
|
||||
* We assume that eval_const_expressions() has been applied and so there
|
||||
* are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND,
|
||||
* including AND just below the top-level List structure).
|
||||
* If this is not true we might fail to prove an implication that is
|
||||
* valid, but no worse consequences will ensue.
|
||||
*
|
||||
* We assume the predicate has already been checked to contain only
|
||||
* immutable functions and operators. We dare not make deductions based on
|
||||
* non-immutable functions, because they might change answers between the
|
||||
* time we make the plan and the time we execute the plan.
|
||||
*/
|
||||
bool
|
||||
predicate_refuted_by(List *predicate_list, List *restrictinfo_list)
|
||||
{
|
||||
if (predicate_list == NIL)
|
||||
return false; /* no predicate: no refutation is possible */
|
||||
if (restrictinfo_list == NIL)
|
||||
return false; /* no restriction: refutation must fail */
|
||||
|
||||
/*
|
||||
* Unlike the implication case, predicate_refuted_by_recurse needs to
|
||||
* be able to see the top-level AND structure on both sides --- otherwise
|
||||
* it will fail to handle the case where one restriction clause is an OR
|
||||
* that can refute the predicate AND as a whole, but not each predicate
|
||||
* clause separately.
|
||||
*/
|
||||
return predicate_refuted_by_recurse((Node *) restrictinfo_list,
|
||||
(Node *) predicate_list);
|
||||
}
|
||||
|
||||
/*----------
|
||||
* predicate_implied_by_recurse
|
||||
@ -240,9 +289,271 @@ predicate_implied_by_recurse(Node *clause, Node *predicate)
|
||||
}
|
||||
}
|
||||
|
||||
/*----------
|
||||
* predicate_refuted_by_recurse
|
||||
* Does the predicate refutation test for non-NULL restriction and
|
||||
* predicate clauses.
|
||||
*
|
||||
* The logic followed here is ("R=>" means "refutes"):
|
||||
* atom A R=> atom B iff: predicate_refuted_by_simple_clause says so
|
||||
* atom A R=> AND-expr B iff: A R=> any of B's components
|
||||
* atom A R=> OR-expr B iff: A R=> each of B's components
|
||||
* AND-expr A R=> atom B iff: any of A's components R=> B
|
||||
* AND-expr A R=> AND-expr B iff: A R=> any of B's components,
|
||||
* *or* any of A's components R=> B
|
||||
* AND-expr A R=> OR-expr B iff: A R=> each of B's components
|
||||
* OR-expr A R=> atom B iff: each of A's components R=> B
|
||||
* OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's
|
||||
* OR-expr A R=> OR-expr B iff: A R=> each of B's components
|
||||
*
|
||||
* Other comments are as for predicate_implied_by_recurse(), except that
|
||||
* we have to handle a top-level AND list on both sides.
|
||||
*----------
|
||||
*/
|
||||
static bool
|
||||
predicate_refuted_by_recurse(Node *clause, Node *predicate)
|
||||
{
|
||||
ListCell *item;
|
||||
|
||||
Assert(clause != NULL);
|
||||
/* skip through RestrictInfo */
|
||||
if (IsA(clause, RestrictInfo))
|
||||
{
|
||||
clause = (Node *) ((RestrictInfo *) clause)->clause;
|
||||
Assert(clause != NULL);
|
||||
Assert(!IsA(clause, RestrictInfo));
|
||||
}
|
||||
Assert(predicate != NULL);
|
||||
|
||||
/*
|
||||
* Since a restriction List clause is handled the same as an AND clause,
|
||||
* we can avoid duplicate code like this:
|
||||
*/
|
||||
if (and_clause(clause))
|
||||
clause = (Node *) ((BoolExpr *) clause)->args;
|
||||
|
||||
/* Ditto for predicate AND-clause and List */
|
||||
if (and_clause(predicate))
|
||||
predicate = (Node *) ((BoolExpr *) predicate)->args;
|
||||
|
||||
if (IsA(clause, List))
|
||||
{
|
||||
if (IsA(predicate, List))
|
||||
{
|
||||
/* AND-clause R=> AND-clause if A refutes any of B's items */
|
||||
/* Needed to handle (x AND y) R=> ((!x OR !y) AND z) */
|
||||
foreach(item, (List *) predicate)
|
||||
{
|
||||
if (predicate_refuted_by_recurse(clause, lfirst(item)))
|
||||
return true;
|
||||
}
|
||||
/* Also check if any of A's items refutes B */
|
||||
/* Needed to handle ((x OR y) AND z) R=> (!x AND !y) */
|
||||
foreach(item, (List *) clause)
|
||||
{
|
||||
if (predicate_refuted_by_recurse(lfirst(item), predicate))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
else if (or_clause(predicate))
|
||||
{
|
||||
/* AND-clause R=> OR-clause if A refutes each of B's items */
|
||||
foreach(item, ((BoolExpr *) predicate)->args)
|
||||
{
|
||||
if (!predicate_refuted_by_recurse(clause, lfirst(item)))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* AND-clause R=> atom if any of A's items refutes B */
|
||||
foreach(item, (List *) clause)
|
||||
{
|
||||
if (predicate_refuted_by_recurse(lfirst(item), predicate))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else if (or_clause(clause))
|
||||
{
|
||||
if (or_clause(predicate))
|
||||
{
|
||||
/* OR-clause R=> OR-clause if A refutes each of B's items */
|
||||
foreach(item, ((BoolExpr *) predicate)->args)
|
||||
{
|
||||
if (!predicate_refuted_by_recurse(clause, lfirst(item)))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else if (IsA(predicate, List))
|
||||
{
|
||||
/*
|
||||
* OR-clause R=> AND-clause if each of A's items refutes any of
|
||||
* B's items.
|
||||
*/
|
||||
foreach(item, ((BoolExpr *) clause)->args)
|
||||
{
|
||||
Node *citem = lfirst(item);
|
||||
ListCell *item2;
|
||||
|
||||
foreach(item2, (List *) predicate)
|
||||
{
|
||||
if (predicate_refuted_by_recurse(citem, lfirst(item2)))
|
||||
break;
|
||||
}
|
||||
if (item2 == NULL)
|
||||
return false; /* citem refutes nothing */
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* OR-clause R=> atom if each of A's items refutes B */
|
||||
foreach(item, ((BoolExpr *) clause)->args)
|
||||
{
|
||||
if (!predicate_refuted_by_recurse(lfirst(item), predicate))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (IsA(predicate, List))
|
||||
{
|
||||
/* atom R=> AND-clause if A refutes any of B's items */
|
||||
foreach(item, (List *) predicate)
|
||||
{
|
||||
if (predicate_refuted_by_recurse(clause, lfirst(item)))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
else if (or_clause(predicate))
|
||||
{
|
||||
/* atom R=> OR-clause if A refutes each of B's items */
|
||||
foreach(item, ((BoolExpr *) predicate)->args)
|
||||
{
|
||||
if (!predicate_refuted_by_recurse(clause, lfirst(item)))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* atom R=> atom is the base case */
|
||||
return predicate_refuted_by_simple_clause((Expr *) predicate,
|
||||
clause);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*----------
|
||||
* predicate_implied_by_simple_clause
|
||||
* Does the predicate implication test for a "simple clause" predicate
|
||||
* and a "simple clause" restriction.
|
||||
*
|
||||
* We return TRUE if able to prove the implication, FALSE if not.
|
||||
*
|
||||
* We have three strategies for determining whether one simple clause
|
||||
* implies another:
|
||||
*
|
||||
* A simple and general way is to see if they are equal(); this works for any
|
||||
* kind of expression. (Actually, there is an implied assumption that the
|
||||
* functions in the expression are immutable, ie dependent only on their input
|
||||
* arguments --- but this was checked for the predicate by the caller.)
|
||||
*
|
||||
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
|
||||
* the predicate is implied if the clause is a strict operator or function
|
||||
* that has "foo" as an input. In this case the clause must yield NULL when
|
||||
* "foo" is NULL, which we can take as equivalent to FALSE because we know
|
||||
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
|
||||
* already known immutable, so the clause will certainly always fail.)
|
||||
*
|
||||
* Finally, we may be able to deduce something using knowledge about btree
|
||||
* operator classes; this is encapsulated in btree_predicate_proof().
|
||||
*----------
|
||||
*/
|
||||
static bool
|
||||
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||
{
|
||||
/* First try the equal() test */
|
||||
if (equal((Node *) predicate, clause))
|
||||
return true;
|
||||
|
||||
/* Next try the IS NOT NULL case */
|
||||
if (predicate && IsA(predicate, NullTest) &&
|
||||
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
|
||||
{
|
||||
Expr *nonnullarg = ((NullTest *) predicate)->arg;
|
||||
|
||||
if (is_opclause(clause) &&
|
||||
list_member(((OpExpr *) clause)->args, nonnullarg) &&
|
||||
op_strict(((OpExpr *) clause)->opno))
|
||||
return true;
|
||||
if (is_funcclause(clause) &&
|
||||
list_member(((FuncExpr *) clause)->args, nonnullarg) &&
|
||||
func_strict(((FuncExpr *) clause)->funcid))
|
||||
return true;
|
||||
return false; /* we can't succeed below... */
|
||||
}
|
||||
|
||||
/* Else try btree operator knowledge */
|
||||
return btree_predicate_proof(predicate, clause, false);
|
||||
}
|
||||
|
||||
/*----------
|
||||
* predicate_refuted_by_simple_clause
|
||||
* Does the predicate refutation test for a "simple clause" predicate
|
||||
* and a "simple clause" restriction.
|
||||
*
|
||||
* We return TRUE if able to prove the refutation, FALSE if not.
|
||||
*
|
||||
* Unlike the implication case, checking for equal() clauses isn't
|
||||
* helpful. (XXX is it worth looking at "x vs NOT x" cases? Probably
|
||||
* not seeing that canonicalization tries to get rid of NOTs.)
|
||||
*
|
||||
* When the predicate is of the form "foo IS NULL", we can conclude that
|
||||
* the predicate is refuted if the clause is a strict operator or function
|
||||
* that has "foo" as an input. See notes for implication case.
|
||||
*
|
||||
* Finally, we may be able to deduce something using knowledge about btree
|
||||
* operator classes; this is encapsulated in btree_predicate_proof().
|
||||
*----------
|
||||
*/
|
||||
static bool
|
||||
predicate_refuted_by_simple_clause(Expr *predicate, Node *clause)
|
||||
{
|
||||
/* First try the IS NULL case */
|
||||
if (predicate && IsA(predicate, NullTest) &&
|
||||
((NullTest *) predicate)->nulltesttype == IS_NULL)
|
||||
{
|
||||
Expr *isnullarg = ((NullTest *) predicate)->arg;
|
||||
|
||||
if (is_opclause(clause) &&
|
||||
list_member(((OpExpr *) clause)->args, isnullarg) &&
|
||||
op_strict(((OpExpr *) clause)->opno))
|
||||
return true;
|
||||
if (is_funcclause(clause) &&
|
||||
list_member(((FuncExpr *) clause)->args, isnullarg) &&
|
||||
func_strict(((FuncExpr *) clause)->funcid))
|
||||
return true;
|
||||
return false; /* we can't succeed below... */
|
||||
}
|
||||
|
||||
/* Else try btree operator knowledge */
|
||||
return btree_predicate_proof(predicate, clause, true);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Define an "operator implication table" for btree operators ("strategies").
|
||||
* Define an "operator implication table" for btree operators ("strategies"),
|
||||
* and a similar table for refutation.
|
||||
*
|
||||
* The strategy numbers defined by btree indexes (see access/skey.h) are:
|
||||
* (1) < (2) <= (3) = (4) >= (5) >
|
||||
@ -263,8 +574,21 @@ predicate_implied_by_recurse(Node *clause, Node *predicate)
|
||||
* then the target expression must be true; if the test returns false, then
|
||||
* the target expression may be false.
|
||||
*
|
||||
* An entry where test_op == 0 means the implication cannot be determined,
|
||||
* i.e., this test should always be considered false.
|
||||
* For example, if clause is "Quantity > 10" and pred is "Quantity > 5"
|
||||
* then we test "5 <= 10" which evals to true, so clause implies pred.
|
||||
*
|
||||
* Similarly, the interpretation of a BT_refute_table entry is:
|
||||
*
|
||||
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
|
||||
* want to determine whether "ATTR target_op CONST2" must be false, then
|
||||
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
|
||||
* then the target expression must be false; if the test returns false, then
|
||||
* the target expression may be true.
|
||||
*
|
||||
* For example, if clause is "Quantity > 10" and pred is "Quantity < 5"
|
||||
* then we test "5 <= 10" which evals to true, so clause refutes pred.
|
||||
*
|
||||
* An entry where test_op == 0 means the implication cannot be determined.
|
||||
*/
|
||||
|
||||
#define BTLT BTLessStrategyNumber
|
||||
@ -274,58 +598,60 @@ predicate_implied_by_recurse(Node *clause, Node *predicate)
|
||||
#define BTGT BTGreaterStrategyNumber
|
||||
#define BTNE 6
|
||||
|
||||
static const StrategyNumber
|
||||
BT_implic_table[6][6] = {
|
||||
static const StrategyNumber BT_implic_table[6][6] = {
|
||||
/*
|
||||
* The target operator:
|
||||
*
|
||||
* LT LE EQ GE GT NE
|
||||
* LT LE EQ GE GT NE
|
||||
*/
|
||||
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
|
||||
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
|
||||
{BTGE, BTGE, 0 , 0 , 0 , BTGE}, /* LT */
|
||||
{BTGT, BTGE, 0 , 0 , 0 , BTGT}, /* LE */
|
||||
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
|
||||
{0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
|
||||
{0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
|
||||
{0, 0, 0, 0, 0, BTEQ} /* NE */
|
||||
{0 , 0 , 0 , BTLE, BTLT, BTLT}, /* GE */
|
||||
{0 , 0 , 0 , BTLE, BTLE, BTLE}, /* GT */
|
||||
{0 , 0 , 0 , 0 , 0 , BTEQ} /* NE */
|
||||
};
|
||||
|
||||
static const StrategyNumber BT_refute_table[6][6] = {
|
||||
/*
|
||||
* The target operator:
|
||||
*
|
||||
* LT LE EQ GE GT NE
|
||||
*/
|
||||
{0 , 0 , BTGE, BTGE, BTGE, 0 }, /* LT */
|
||||
{0 , 0 , BTGT, BTGT, BTGE, 0 }, /* LE */
|
||||
{BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */
|
||||
{BTLE, BTLT, BTLT, 0 , 0 , 0 }, /* GE */
|
||||
{BTLE, BTLE, BTLE, 0 , 0 , 0 }, /* GT */
|
||||
{0 , 0 , BTEQ, 0 , 0 , 0 } /* NE */
|
||||
};
|
||||
|
||||
|
||||
/*----------
|
||||
* predicate_implied_by_simple_clause
|
||||
* Does the predicate implication test for a "simple clause" predicate
|
||||
* and a "simple clause" restriction.
|
||||
* btree_predicate_proof
|
||||
* Does the predicate implication or refutation test for a "simple clause"
|
||||
* predicate and a "simple clause" restriction, when both are simple
|
||||
* operator clauses using related btree operators.
|
||||
*
|
||||
* We have three strategies for determining whether one simple clause
|
||||
* implies another:
|
||||
* When refute_it == false, we want to prove the predicate true;
|
||||
* when refute_it == true, we want to prove the predicate false.
|
||||
* (There is enough common code to justify handling these two cases
|
||||
* in one routine.) We return TRUE if able to make the proof, FALSE
|
||||
* if not able to prove it.
|
||||
*
|
||||
* A simple and general way is to see if they are equal(); this works for any
|
||||
* kind of expression. (Actually, there is an implied assumption that the
|
||||
* functions in the expression are immutable, ie dependent only on their input
|
||||
* arguments --- but this was checked for the predicate by CheckPredicate().)
|
||||
*
|
||||
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
|
||||
* the predicate is implied if the clause is a strict operator or function
|
||||
* that has "foo" as an input. In this case the clause must yield NULL when
|
||||
* "foo" is NULL, which we can take as equivalent to FALSE because we know
|
||||
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
|
||||
* already known immutable, so the clause will certainly always fail.)
|
||||
*
|
||||
* Our other way works only for binary boolean opclauses of the form
|
||||
* What we look for here is binary boolean opclauses of the form
|
||||
* "foo op constant", where "foo" is the same in both clauses. The operators
|
||||
* and constants can be different but the operators must be in the same btree
|
||||
* operator class. We use the above operator implication table to be able to
|
||||
* operator class. We use the above operator implication tables to
|
||||
* derive implications between nonidentical clauses. (Note: "foo" is known
|
||||
* immutable, and constants are surely immutable, but we have to check that
|
||||
* the operators are too. As of 8.0 it's possible for opclasses to contain
|
||||
* operators that are merely stable, and we dare not make deductions with
|
||||
* these.)
|
||||
*
|
||||
* Eventually, rtree operators could also be handled by defining an
|
||||
* appropriate "RT_implic_table" array.
|
||||
*----------
|
||||
*/
|
||||
static bool
|
||||
predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||
btree_predicate_proof(Expr *predicate, Node *clause, bool refute_it)
|
||||
{
|
||||
Node *leftop,
|
||||
*rightop;
|
||||
@ -356,29 +682,8 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||
EState *estate;
|
||||
MemoryContext oldcontext;
|
||||
|
||||
/* First try the equal() test */
|
||||
if (equal((Node *) predicate, clause))
|
||||
return true;
|
||||
|
||||
/* Next try the IS NOT NULL case */
|
||||
if (predicate && IsA(predicate, NullTest) &&
|
||||
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
|
||||
{
|
||||
Expr *nonnullarg = ((NullTest *) predicate)->arg;
|
||||
|
||||
if (is_opclause(clause) &&
|
||||
list_member(((OpExpr *) clause)->args, nonnullarg) &&
|
||||
op_strict(((OpExpr *) clause)->opno))
|
||||
return true;
|
||||
if (is_funcclause(clause) &&
|
||||
list_member(((FuncExpr *) clause)->args, nonnullarg) &&
|
||||
func_strict(((FuncExpr *) clause)->funcid))
|
||||
return true;
|
||||
return false; /* we can't succeed below... */
|
||||
}
|
||||
|
||||
/*
|
||||
* Can't do anything more unless they are both binary opclauses with a
|
||||
* Both expressions must be binary opclauses with a
|
||||
* Const on one side, and identical subexpressions on the other sides.
|
||||
* Note we don't have to think about binary relabeling of the Const
|
||||
* node, since that would have been folded right into the Const.
|
||||
@ -579,7 +884,11 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||
/*
|
||||
* Look up the "test" strategy number in the implication table
|
||||
*/
|
||||
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
||||
if (refute_it)
|
||||
test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1];
|
||||
else
|
||||
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
|
||||
|
||||
if (test_strategy == 0)
|
||||
{
|
||||
/* Can't determine implication using this interpretation */
|
||||
@ -608,13 +917,10 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||
* Last check: test_op must be immutable.
|
||||
*
|
||||
* Note that we require only the test_op to be immutable, not the
|
||||
* original clause_op. (pred_op must be immutable, else it
|
||||
* would not be allowed in an index predicate.) Essentially
|
||||
* we are assuming that the opclass is consistent even if it
|
||||
* contains operators that are merely stable.
|
||||
*
|
||||
* XXX the above reasoning doesn't hold anymore if this routine
|
||||
* is used to prove things that are not index predicates ...
|
||||
* original clause_op. (pred_op is assumed to have been checked
|
||||
* immutable by the caller.) Essentially we are assuming that
|
||||
* the opclass is consistent even if it contains operators that
|
||||
* are merely stable.
|
||||
*/
|
||||
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
|
||||
{
|
||||
@ -663,7 +969,7 @@ predicate_implied_by_simple_clause(Expr *predicate, Node *clause)
|
||||
|
||||
if (isNull)
|
||||
{
|
||||
/* Treat a null result as false ... but it's a tad fishy ... */
|
||||
/* Treat a null result as non-proof ... but it's a tad fishy ... */
|
||||
elog(DEBUG2, "null predicate test result");
|
||||
return false;
|
||||
}
|
||||
|
Reference in New Issue
Block a user